Spectral CT-based radiomics signature for distinguishing malignant pulmonary nodules from benign

Author:

Xu Hang,Zhu Na,Yue Yong,Guo Yan,Wen Qingyun,Gao Lu,Hou Yang,Shang Jin

Abstract

Abstract Objectives To evaluate the discriminatory capability of spectral CT-based radiomics to distinguish benign from malignant solitary pulmonary solid nodules (SPSNs). Materials and methods A retrospective study was performed including 242 patients with SPSNs who underwent contrast-enhanced dual-layer Spectral Detector CT (SDCT) examination within one month before surgery in our hospital, which were randomly divided into training and testing datasets with a ratio of 7:3. Regions of interest (ROIs) based on 40-65 keV images of arterial phase (AP), venous phases (VP), and 120kVp of SDCT were delineated, and radiomics features were extracted. Then the optimal radiomics-based score in identifying SPSNs was calculated and selected for building radiomics-based model. The conventional model was developed based on significant clinical characteristics and spectral quantitative parameters, subsequently, the integrated model combining radiomics-based model and conventional model was established. The performance of three models was evaluated with discrimination, calibration, and clinical application. Results The 65 keV radiomics-based scores of AP and VP had the optimal performance in distinguishing benign from malignant SPSNs (AUC65keV-AP = 0.92, AUC65keV-VP = 0.88). The diagnostic efficiency of radiomics-based model (AUC = 0.96) based on 65 keV images of AP and VP outperformed conventional model (AUC = 0.86) in the identification of SPSNs, and that of integrated model (AUC = 0.97) was slightly further improved. Evaluation of three models showed the potential for generalizability. Conclusions Among the 40-65 keV radiomics-based scores based on SDCT, 65 keV radiomics-based score had the optimal performance in distinguishing benign from malignant SPSNs. The integrated model combining radiomics-based model based on 65 keV images of AP and VP with Zeff-AP was significantly superior to conventional model in the discrimination of SPSNs.

Funder

Outstanding Scientific Fund of Shengjing Hospital

345 Talent Project in Shengjing Hospital of China Medical University

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Reference39 articles.

1. Khawaja A, Bartholmai BJ, Rajagopalan S, Karwoski RA, Varghese C, Maldonado F, Peikert T. Do we need to see to believe?-radiomics for lung nodule classification and lung cancer risk stratification. J Thorac Dis. 2020;12(6):3303–16. https://doi.org/10.21037/jtd.2020.03.105.

2. Dennie C, Thornhill R, Sethi-Virmani V, Souza CA, Bayanati H, Gupta A, Maziak D. Role of quantitative computed tomography texture analysis in the differentiation of primary lung cancer and granulomatous nodules. Quant Imaging Med Surg. 2016;6(1):6–15. https://doi.org/10.3978/j.issn.2223-4292.2016.02.01.

3. Alilou M, Beig N, Orooji M, Rajiah P, Velcheti V, Rakshit S, Reddy N, Yang M, Jacono F, Gilkeson RC, Linden P, Madabhushi A. An integrated segmentation and shape-based classification scheme for distinguishing adenocarcinomas from granulomas on lung CT. Med Phys. 2017;44(7):3556–69. https://doi.org/10.1002/mp.12208.

4. Beig N, Khorrami M, Alilou M, Prasanna P, Braman N, Orooji M, Rakshit S, Bera K, Rajiah P, Ginsberg J, Donatelli C, Thawani R, Yang M, Jacono F, Tiwari P, Velcheti V, Gilkeson R, Linden P, Madabhushi A. Perinodular and Intranodular Radiomic Features on Lung CT Images Distinguish Adenocarcinomas from Granulomas. Radiology. 2019;290(3):783–92. https://doi.org/10.1148/radiol.2018180910.

5. Yang X, He J, Wang J, Li W, Liu C, Gao D, Guan Y. CT-based radiomics signature for differentiating solitary granulomatous nodules from solid lung adenocarcinoma. Lung Cancer. 2018;125:109–14. https://doi.org/10.1016/j.lungcan.2018.09.013.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3