Prediction of the risk of developing hepatocellular carcinoma in health screening examinees: a Korean cohort study

Author:

An Chansik,Choi Jong Won,Lee Hyung Soon,Lim Hyunsun,Ryu Seok Jong,Chang Jung Hyun,Oh Hyun Cheol

Abstract

Abstract Background Almost all Koreans are covered by mandatory national health insurance and are required to undergo health screening at least once every 2 years. We aimed to develop a machine learning model to predict the risk of developing hepatocellular carcinoma (HCC) based on the screening results and insurance claim data. Methods The National Health Insurance Service-National Health Screening database was used for this study (NHIS-2020-2-146). Our study cohort consisted of 417,346 health screening examinees between 2004 and 2007 without cancer history, which was split into training and test cohorts by the examination date, before or after 2005. Robust predictors were selected using Cox proportional hazard regression with 1000 different bootstrapped datasets. Random forest and extreme gradient boosting algorithms were used to develop a prediction model for the 9-year risk of HCC development after screening. After optimizing a prediction model via cross validation in the training cohort, the model was validated in the test cohort. Results Of the total examinees, 0.5% (1799/331,694) and 0.4% (390/85,652) in the training cohort and the test cohort were diagnosed with HCC, respectively. Of the selected predictors, older age, male sex, obesity, abnormal liver function tests, the family history of chronic liver disease, and underlying chronic liver disease, chronic hepatitis virus or human immunodeficiency virus infection, and diabetes mellitus were associated with increased risk, whereas higher income, elevated total cholesterol, and underlying dyslipidemia or schizophrenic/delusional disorders were associated with decreased risk of HCC development (p < 0.001). In the test, our model showed good discrimination and calibration. The C-index, AUC, and Brier skill score were 0.857, 0.873, and 0.078, respectively. Conclusions Machine learning-based model could be used to predict the risk of HCC development based on the health screening examination results and claim data.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3