Identification of dissociation factors in pancreatic Cancer using a mass spectrometry-based proteomic approach

Author:

Liu Peng,Kong Lingming,Liang Keke,Wu Yunhao,Jin Haoyi,Song Bing,Tan Xiaodong

Abstract

Abstract Backgroud Pancreatic cancer is a highly malignant tumor of the digestive system. This secretome of pancreatic cancer is key to its progression and metastasis. But different methods of protein extraction affect the final results. In other words, the real secretion of proteins in cancer cells has been changed. Based on mass spectrometry, we analyze the secretome from the serum-containing and serum-free medium, using different protein pretreatment methods. This study aims to identify dissociation factors in pancreatic cancer. Methods In this study, pancreatic cancer cells were cultured in serum-containing or serum-free medium, and the corresponding supernatants were extracted as samples. Subsequently, the above samples were separated by size exclusion chromatography (SEC), and peptide segments were identified by LC-MS/MS. The final results were identified via the hamster secreted protein database and a public database. Results Although the number of identified proteins in the serum-free medium group was high, the real secretion of proteins in pancreatic cancer cells was changed. There were six significant secreted proteins in the serum-containing medium group. Survival analysis via the TCGA database suggested that patients with higher expression levels of YWHAG showed a worse overall survival rate than those with lower YWHAG expression. Conclusions Our study demonstrated the results in the serum-containing medium group were more similar to the real secretome of pancreatic cancer cells. YWHAG could be used as a prognostic indicator for pancreatic cancer.

Funder

Natural Science Foundation of Liaoning Province

National Natural Science Foundation of China

Youth Fund Project of China Medical University

345 Talent Project of Shengjing Hosiptal of China Medical University

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3