Cooperation of Dnmt3a R878H with Nras G12D promotes leukemogenesis in knock-in mice: a pilot study

Author:

Shi Xiaodong,Yang Ying,Shang Siqi,Wu Songfang,Zhang Weina,Peng Lijun,Huang Ting,Zhang Ruihong,Ren Ruibao,Mi Jianqing,Wang YueyingORCID

Abstract

Abstract Background DNMT3A R882H, a frequent mutation in acute myeloid leukemia (AML), plays a critical role in malignant hematopoiesis. Recent findings suggest that DNMT3A mutant acts as a founder mutation and requires additional genetic events to induce full-blown AML. Here, we investigated the cooperation of mutant DNMT3A and NRAS in leukemogenesis by generating a double knock-in (DKI) mouse model harboring both Dnmt3a R878H and Nras G12D mutations. Methods DKI mice with both Dnmt3a R878H and Nras G12D mutations were generated by crossing Dnmt3a R878H knock-in (KI) mice and Nras G12D KI mice. Routine blood test, flow cytometry analysis and morphological analysis were performed to determine disease phenotype. RNA-sequencing (RNA-seq), RT-PCR and Western blot were carried out to reveal the molecular mechanism. Results The DKI mice developed a more aggressive AML with a significantly shortened lifespan and higher percentage of blast cells compared with KI mice expressing Dnmt3a or Nras mutation alone. RNA-seq analysis showed that Dnmt3a and Nras mutations collaboratively caused abnormal expression of a series of genes related to differentiation arrest and growth advantage. Myc transcription factor and its target genes related to proliferation and apoptosis were up-regulated, thus contributing to promote the process of leukemogenesis. Conclusion This study showed that cooperation of DNMT3A mutation and NRAS mutation could promote the onset of AML by synergistically disturbing the transcriptional profiling with Myc pathway involvement in DKI mice.

Funder

National Natural Science Foundation of China

Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant

Shanghai Jiao Tong University Tang Scholar Program

SMC-Morningstar Young Scholars Program

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3