Circ_0021350 plays an oncogene role by regulating miR-1207-3p/PIK3R3 in glioblastoma

Author:

Tan Cheng,Wei Jun,Li Zhaohui,Tian Nan,Wang Zhengming,Wang Guan,Han Liang,Tian Yu

Abstract

Abstract Background Glioblastoma (GBM) is the most malignant glioma, with poor survival rates and prognosis. Several studies have reported the abnormal expression of circular RNAs (circRNAs) and their functions in the malignant biological behavior of GBM. However, such research is still in the preliminary stages, and further study is needed to confirm the therapeutic potential of circRNAs in GBM. Methods RNA-seq was performed using four tumor tissues from patients with GBM and their adjacent non-tumor brain tissues to screen differentially expressed circRNAs. Fluorescence in situ hybridization assay was used to examine the location of circ_0021350 in glioma cells. In addition, a series of biological function assays were employed to verify the oncogenic role of circ_0021350 in GBM. Quantitative reverse transcription PCR was used to examine circular, micro- (miRNA), and messenger RNA (mRNA) levels. Furthermore, dual-luciferase reporter, RNA pull-down, and RNA binding protein immunoprecipitation assays were applied to verify the interaction between circ_0021350 and its downstream effectors. Results Circ_0021350 was significantly elevated in GBM tissues and glioma cells. Overexpression of circ_0021350 promoted glioma cell proliferation and metastatic ability; silencing of circ_0021350 had the opposite effect. Mechanistic analysis revealed that circ_0021350 sponged miR-1207-3p to regulate PIK3R3, whose overexpression reversed the reduction in the malignant biological behavior of glioma cells caused by silencing circ_0021350. Conclusion Our findings suggest that circ_0021350 is an oncogenic circRNA in GBM, and the circ_0021350/miR-1207-3p/PIK3R3 axis may serve as a potential therapeutic target in GBM treatment.

Funder

the Department of Education of Jilin Province

grants from the Science and Technology Development Program of Jilin province

the Health Science and Technology Ability Improvement Project of Jilin province

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3