The construction and analysis of ceRNA network and patterns of immune infiltration in lung adenocarcinoma

Author:

Li Jinglong,Liu Wenyao,Dong Xiaocheng,Dai Yunfeng,Chen Shaosen,Zhao Enliang,Liu Yunlong,Bao Hongguang

Abstract

Abstract Background Competitive Endogenous RNA (ceRNA) may be closely associated with tumor progression. However, studies on ceRNAs and immune cells in LUAD are scarce. Method The profiles of gene expression and clinical data of LUAD patients were extracted from the TCGA database. Bioinformatics methods were used to evaluate differentially-expressed genes (DEGs) and to form a ceRNA network. Preliminary verification of clinical specimens was utilized to detect the expressions of key biomarkers at the tissues. Cox and Lasso regressions were used to identify key genes, and prognosis prediction nomograms were formed. The mRNA levels of 9 genes in the risk score model in independent clinical LUAD samples were detected by qRT-PCR. The interconnection between the risk of cancer and immune cells was evaluated using the CIBERSORT algorithm, while the conformation of notable tumor-infiltrating immune cells (TIICs) in the LUAD tissues of the high and low risk groups was assessed using the RNA transcript subgroup in order to identify tissue types. Finally, co-expression study was used to examine the interconnection between the key genes in the ceRNA networks and the immune cells. Result A ceRNA network of 115 RNAs was established, and nine key genes were identified to construct a Cox proportional-hazard model and create a prognostic nomogram. This risk-assessment model might serve as an independent factor to forecast the prognosis of LUAD, and it was consistent with the preliminary verification of clinical specimens. Survival analysis of clinical samples further validated the potential value of high risk groups in predicting LUAD prognosis. Five immune cells were identified with significant differences in the LUAD tissues of the high and low risk groups. Besides, two pairs of biomarkers associated with the growth of LUAD were found, i.e., E2F7 and macrophage M1 (R = 0.419, p = 1.4e− 08) and DBF4 and macrophage M1 (R = 0.282, p < 2.2 e− 16). Conclusion This study identified several important ceRNAs, i.e. (E2F7 and BNF4) and TIICs (macrophage M1), which might be related to the development and prognosis of LUAD. The established risk-assessment model might be a potential tool in predicting LUAD of prognosis.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3