Computational analysis for identification of early diagnostic biomarkers and prognostic biomarkers of liver cancer based on GEO and TCGA databases and studies on pathways and biological functions affecting the survival time of liver cancer

Author:

Gao ShiyongORCID,Gang Jian,Yu Miao,Xin Guosong,Tan Huixin

Abstract

Abstract Background Liver cancer is the sixth most commonly diagnosed cancer and the fourth most common cause of cancer death. The purpose of this work is to find new diagnostic biomarkers or prognostic biomarkers and explore the biological functions related to the prognosis of liver cancer. Methods GSE25097 datasets were firstly obtained and compared with TCGA LICA datasets and an analysis of the overlapping differentially expressed genes (DEGs) was conducted. Cytoscape was used to screen out the Hub Genes among the DEGs. ROC curve analysis was used to screen the Hub Genes to determine the genes that could be used as diagnostic biomarkers. Kaplan-Meier analysis and Cox proportional hazards model screened genes associated with prognosis biomarkers, and further Gene Set Enrichment Analysis was performed on the prognosis genes to explore the mechanism affecting the survival and prognosis of liver cancer patients. Results 790 DEGs and 2162 DEGs were obtained respectively from the GSE25097 and TCGA LIHC data sets, and 102 Common DEGs were identified by overlapping the two DEGs. Further screening identified 22 Hub Genes from 102 Common DEGs. ROC and survival curves were used to analyze these 22 Hub Genes and it was found that there were 16 genes with a value of AUC > 90%. Among these, the expression levels of ESR1,SPP1 and FOSB genes were closely related to the survival time of liver cancer patients. Three common pathways of ESR1, FOBS and SPP1 genes were identified along with seven common pathways of ESR1 and SPP1 genes and four common pathways of ESR1 and FOSB genes. Conclusions SPP1, AURKA, NUSAP1, TOP2A, UBE2C, AFP, GMNN, PTTG1, RRM2, SPARCL1, CXCL12, FOS, DCN, SOCS3, FOSB and PCK1 can be used as diagnostic biomarkers for liver cancer, among which FOBS and SPP1 genes can also be used as prognostic biomarkers. Activation of the cell cycle-related pathway, pancreas beta cells pathway, and the estrogen signaling pathway, while on the other hand inhibition of the hallmark heme metabolism pathway, hallmark coagulation pathway, and the fat metabolism pathway may promote prognosis in liver cancer patients.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Reference38 articles.

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68(6):394-424.

2. Piñero F, Tanno M, Aballay Soteras G, Tisi Baña M, Dirchwolf M, Fassio E, Ruf A, Mengarelli S, Borzi S, Fernández N, Ridruejo E, Descalzi V, Anders M, Mazzolini G, Reggiardo V, Marciano S, Perazzo F, Spina JC, McCormack L, Maraschio M, Lagues C, Gadano A, Villamil F, Silva M, Cairo F, Ameigeiras B, Argentinean Association for the Study of Liver Diseases (A.A.E.E.H). Argentinian clinical practice guideline for surveillance, diagnosis, staging and treatment of hepatocellular carcinoma. Ann Hepatol 2020;19(5):546–569. https://doi.org/https://doi.org/10.1016/j.aohep.2020.06.003.

3. Feld JJ, Krassenburg LAP. What comes first: treatment of viral hepatitis or liver cancer? Dig Dis Sci 2019;64(4):1041–1049. https://doi.org/https://doi.org/10.1007/s10620-019-05518-5.

4. Ringelhan M, O'Connor T, Protzer U, Heikenwalder M. The direct and indirect roles of HBV in liver cancer: prospective markers for HCC screening and potential therapeutic targets. J Pathol 2015;235(2):355–367. https://doi.org/https://doi.org/10.1002/path.4434.

5. Pham C, Sin MK. Use of electronic health Records at Federally Qualified Health Centers: a potent tool to increase viral hepatitis screening and address the climbing incidence of liver Cancer. J Cancer Educ 2020. https://doi.org/https://doi.org/10.1007/s13187-020-01741-1.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3