Short term exposure to air pollution and mortality in the US: a double negative control analysis

Author:

Liu Rongqi AbbieORCID,Wei Yaguang,Qiu Xinye,Kosheleva Anna,Schwartz Joel D.

Abstract

Abstract Rationale Studies examining the association of short-term air pollution exposure and daily deaths have typically been limited to cities and used citywide average exposures, with few using causal models. Objectives To estimate the associations between short-term exposures to fine particulate matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2) and all-cause and cause-specific mortality in multiple US states using census tract or address exposure and including rural areas, using a double negative control analysis. Methods We conducted a time-stratified case-crossover study examining the entire population of seven US states from 2000–2015, with over 3 million non-accidental deaths. Daily predictions of PM2.5, O3, and NO2 at 1x1 km grid cells were linked to mortality based on census track or residential address. For each pollutant, we used conditional logistic regression to quantify the association between exposure and the relative risk of mortality conditioning on meteorological variables, other pollutants, and using double negative controls. Results A 10 μg/m3 increase in PM2.5 exposure at the moving average of lag 0–2 day was significantly associated with a 0.67% (95%CI: 0.34–1.01%) increase in all-cause mortality. 10 ppb increases in NO2 or O3 exposure at lag 0–2 day were marginally associated with and 0.19% (95%CI: −0.01-0.38%) and 0.20 (95% CI-0.01, 0.40), respectively. The adverse effects of PM2.5 persisted when pollution levels were restricted to below the current global air pollution standards. Negative control models indicated little likelihood of omitted confounders for PM2.5, and mixed results for the gases. PM2.5 was also significantly associated with respiratory mortality and cardiovascular mortality. Conclusions Short-term exposure to PM2.5 and possibly O3 and NO2 are associated with increased risks for all-cause mortality. Our findings delivered evidence that risks of death persisted at levels below currently permissible.

Funder

U.S. Environmental Protection Agency

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3