Author:
Rahman Md Mostafijur,Liu Fei Fei,Eckel Sandrah P.,Sankaranarayanan Ishwarya,Shafiei-Jahani Pedram,Howard Emily,Baronikian Lilit,Sattler Fred,Lurmann Frederick W.,Allayee Hooman,Akbari Omid,McConnell Rob
Abstract
Abstract
Background
Air pollution has been associated with metabolic disease and obesity. Adipokines are potential mediators of these effects, but studies of air pollution-adipokine relationships are inconclusive. Macrophage and T cells in adipose tissue (AT) and blood modulate inflammation; however, the role of immune cells in air pollution-induced dysregulation of adipokines has not been studied. We examined the association between air pollution exposure and circulating and AT adipokine concentrations, and whether these relationships were modified by macrophage and T cell numbers in the blood and AT.
Methods
Fasting blood and abdominal subcutaneous AT biopsies were collected from 30 overweight/obese 18–26 year-old volunteers. Flow cytometry was used to quantify T effector (Teff, inflammatory) and regulatory (Treg, anti-inflammatory) lymphocytes and M1 [inflammatory] and M2 [anti-inflammatory]) macrophage cell number. Serum and AT leptin and adiponectin were measured using enzyme-linked immunosorbent assay (ELISA). Exposure to near-roadway air pollution (NRAP) from freeway and non-freeway vehicular sources and to regional particulate matter, nitrogen dioxide and ozone were estimated for the year prior to biopsy, based on participants’ residential addresses. Linear regression models were used to examine the association between air pollution exposures and adipokines and to evaluate effect modification by immune cell counts.
Results
An interquartile increase in non-freeway NRAP exposure during 1 year prior to biopsy was associated with higher leptin levels in both serum [31.7% (95% CI: 10.4, 52.9%)] and AT [19.4% (2.2, 36.6%)]. Non-freeway NRAP exposure effect estimates were greater among participants with greater than median Teff/Treg ratio and M1/M2 ratio in blood, and with greater M1 counts in AT. No adipokine associations with regional air pollutants were found.
Discussion
Our results suggest that NRAP may increase serum leptin levels in obese young adults, and this association may be promoted in a pro-inflammatory immune cell environment in blood and AT.
Funder
National Institutes of Health
U.S. Environmental Protection Agency
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Reference87 articles.
1. Fang X, Zuo J, Zhou J, Cai J, Chen C, Xiang E, et al. Childhood obesity leads to adult type 2 diabetes and coronary artery diseases: a 2-sample mendelian randomization study. Medicine (Baltimore) [Internet]. 2019;98 Available from: https://journals.lww.com/md-journal/Fulltext/2019/08090/Childhood_obesity_leads_to_adult_type_2_diabetes.76.aspx.
2. Bridger T. Childhood obesity and cardiovascular disease. Paediatr child health [internet]. Pulsus Group Inc. 2009;14:177–82 Available from: https://pubmed.ncbi.nlm.nih.gov/20190900.
3. Goran MI, Ball GDC, Cruz ML. Obesity and risk of type 2 diabetes and cardiovascular disease in. Child Adolescents. 2003;88:1417–27.
4. May AL, Kuklina EV, Yoon PW. Prevalence of cardiovascular disease risk factors among US adolescents, 1999-2008. Pediatr U S. 2012;129:1035–41.
5. Finkelstein EA, Khavjou OA, Thompson H, Trogdon JG, Pan L, Sherry B, et al. Obesity and severe obesity forecasts through 2030. Am J Prev Med Neth. 2012;42:563–70.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献