Residents’ experiences during a hydrogen sulfide crisis in Carson, California

Author:

Quist Arbor J. L.,Hovav April,Silverman Alexander D.,Shamasunder Bhavna,Johnston Jill E.

Abstract

Abstract Background In early October 2021, thousands of residents in Carson, California began complaining of malodors and headaches. Hydrogen sulfide (H2S), a noxious odorous gas, was measured at concentrations up to 7000 parts per billion (ppb) and remained above California’s acute air quality standard of 30 ppb for a month. Intermittent elevations of H2S continued for 3 months. After 2 months of malodor in this environmental justice community, a government agency attributed the H2S to environmental pollution from a warehouse fire. Research has yielded conflicting results on the health effects of H2S exposure at levels that were experienced during this event. This research fills a critical need for understanding how people perceive and experience emergent environmental health events and will help shape future responses. Methods Through a community-academic partnership, we conducted 6 focus groups with 33 participants who resided in the Carson area during the crisis. We sought to understand how this incident affected residents through facilitated discussion on topics including information acquisition, impressions of the emergency response, health symptoms, and ongoing impacts. Results The majority of participants were women (n = 25), identified as Latina/o (n = 19), and rent their homes (n = 21). Participants described difficulty obtaining coherent information about the emergency, which resulted in feelings of abandonment. Most participants felt that local government and healthcare providers downplayed and/or disregarded their concerns despite ongoing odors and health symptoms. Participants described experiencing stress from the odors’ unknown health effects and continued fear of future odor incidents. Residents sought to take control of the crisis through information sharing, community networking, and activism. Participants experienced longer term effects from this event, including increased awareness of pollution and reduced trust in local agencies. Discussion This study demonstrates the necessity of clear, comprehensive, and prompt responses by relevant decisionmakers to chemical emergencies to appropriately address residents’ fears, curb the spread of misinformation, and minimize adverse health effects. Participant responses also point to the benefit of supporting horizontal community networks for improved information sharing. By engaging directly with community members, researchers and disaster responders can better understand the various and complex impacts of chemical disasters and can improve response.

Funder

National Institute of Environmental Health Sciences

Publisher

Springer Science and Business Media LLC

Reference68 articles.

1. Gammon K. The stench of death’: California city plagued by extraordinary odor for weeks’, The Guardian, October 29, 2021. 2021.

2. H2S 1-hour Data'. 2021. South Coast Air Quality Management District https://www.aqmd.gov/docs/default-source/compliance/dominguez-channel/h2s-1-hour-data.pdf?sfvrsn=16.

3. Chung C. Warehouse Fire Was Source of ‘Putrid’ Odor in California’, The New York Times, December 5, 2021. 2021.

4. Sahagún L. A massive fire unleashed a flood of toxic runoff, triggering an environmental disaster’, Los Angeles Times, March 8, 2022. 2022.

5. Dominguez Channel Odor Event. 2021. Los Angeles, CA: Los Angeles County Department of Public Health. https://publichealth.lacounty.gov/media/dominguezchannelodorevent/.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Introduction and technology selection criteria;Advances in Chemical Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3