Author:
Wang Ying,Meng Zhaowei,Wei Sen,Li Xuebing,Su Zheng,Jiang Yong,Wu Heng,Pan Hongli,Wang Jing,Zhou Qinghua,Qiao Youlin,Fan Yaguang
Abstract
Abstract
Background
Volatile organic compounds (VOCs) encompass hundreds of high production volume chemicals and have been reported to be associated with adverse respiratory outcomes such as chronic obstructive pulmonary disease (COPD). However, research on the combined toxic effects of exposure to various VOCs on COPD is lacking. We aimed to assess the effect of VOC metabolite mixture on COPD risk in a large population sample.
Methods
We assessed the effect of VOC metabolite mixture on COPD risk in 5997 adults from the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2020 (pre-pandemic) using multivariate logistic regression, Bayesian weighted quantile sum regression (BWQS), quantile-based g-Computation method (Qgcomp), and Bayesian kernel machine regression (BKMR). We explored whether these associations were mediated by white blood cell (WBC) count and total bilirubin.
Results
In the logistic regression model, we observed a significantly increased risk of COPD associated with 9 VOC metabolites. Conversely, N-acetyl-S-(benzyl)-L-cysteine (BMA) and N-acetyl-S-(n-propyl)-L-cysteine (BPMA) showed insignificant negative correlations with COPD risk. The overall mixture exposure demonstrated a significant positive relationship with COPD in both the BWQS model (adjusted odds ratio (OR) = 1.30, 95% confidence interval (CI): 1.06, 1.58) and BKMR model, and with marginal significance in the Qgcomp model (adjusted OR = 1.22, 95% CI: 0.98, 1.52). All three models indicated a significant effect of the VOC metabolite mixture on COPD in non-current smokers. WBC count mediated 7.1% of the VOC mixture associated-COPD in non-current smokers.
Conclusions
Our findings provide novel evidence suggesting that VOCs may have adverse associations with COPD in the general population, with N, N- Dimethylformamide and 1,3-Butadiene contributing most. These findings underscore the significance of understanding the potential health risks associated with VOC mixture and emphasize the need for targeted interventions to mitigate the adverse effects on COPD risk.
Funder
National Natural Science Foundation of China
Tianjin Natural Science Foundation
Publisher
Springer Science and Business Media LLC
Reference48 articles.
1. Collaborators GBDCRD. Global burden of chronic respiratory diseases and risk factors, 1990–2019: an update from the Global Burden of Disease Study 2019. EClinicalMedicine 2023, 59:101936.
2. Lin JS, Webber EM, Thomas RG. Screening for Chronic Obstructive Pulmonary Disease: a targeted evidence update for the US Preventive Services Task Force. Rockville (MD); 2022.
3. Kotapati S, Sangaraju D, Esades A, Hallberg L, Walker VE, Swenberg JA, Tretyakova NY. Bis-butanediol-mercapturic acid (bis-BDMA) as a urinary biomarker of metabolic activation of butadiene to its ultimate carcinogenic species. Carcinogenesis. 2014;35(6):1371–8.
4. Pluym N, Gilch G, Scherer G, Scherer M. Analysis of 18 urinary mercapturic acids by two high-throughput multiplex-LC-MS/MS methods. Anal Bioanal Chem. 2015;407(18):5463–76.
5. Yang Y, Liu B, Hua J, Yang T, Dai Q, Wu J, Feng Y, Hopke PK. Global review of source apportionment of volatile organic compounds based on highly time-resolved data from 2015 to 2021. Environ Int. 2022;165:107330.