Climate factors driven typhus group rickettsiosis incidence dynamics in Xishuangbanna Dai autonomous prefecture of Yunnan province in China, 2005–2017

Author:

Gao Yuan,Niu Yanlin,Sun Wanwan,Liu Keke,Liu Xiaobo,Zhao Ning,Yue Yujuan,Wu Haixia,Meng Fengxia,Wang Jun,Wang Xueshuang,Liu Qiyong

Abstract

Abstract Background Typhus group rickettsiosis (TGR), which is a neglected vector-borne infectious disease, including epidemic typhus and endemic typhus. We explored the lag effects and nonlinear association between meteorological factors and TGR incidence in Xishuangbanna Dai autonomous prefecture from 2005 to 2017, China. Methods A Poisson regression with a distributed lag nonlinear model (DLNM) was utilized to analyze TGR cases data and the contemporaneous meteorological data. Results A J-shaped nonlinear association between weekly mean temperature and TGR incidence was found. The cumulative exposure to weekly mean temperature indicated that the RR increased with the increment of temperature. Taking the median value as the reference, lower temperatures could decrease the risk of TGR incidence, while higher temperatures could increase the risk of TGR incidence and last for 21 weeks. We also found a reversed U-shaped nonlinear association between weekly mean precipitation and TGR incidence. Precipitation between 5 mm and 13 mm could increase the risk of TGR incidence. Taking the median value as the reference, no precipitation and lower precipitation could decrease the risk of TGR incidence, while higher precipitation could increase the risk of TGR incidence and last for 18 weeks. Conclusions The prevention and control measures of TGR should be implemented according to climatic conditions by the local government and health departments in order to improve the efficiency.

Funder

National Basic Research Program of China

National Major Research and Development Program

China Prosperity Strategic Programme Fund

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3