Long-term personal air pollution exposure and risk for acute exacerbation of idiopathic pulmonary fibrosis

Author:

Tomos IoannisORCID,Dimakopoulou Konstantina,Manali Effrosyni D.,Papiris Spyros A.,Karakatsani Anna

Abstract

Abstract Background Urban air pollution is involved in the progress of idiopathic pulmonary fibrosis (IPF). Its potential role on the devastating event of Acute Exacerbation of IPF (AE-IPF) needs to be clarified. This study examined the association between long-term personal air pollution exposure and AE- IPF risk taking into consideration inflammatory mediators and telomere length (TL). Methods All consecutive IPF-patients referred to our Hospital from October 2013-June 2019 were included. AE-IPF events were recorded and inflammatory mediators and TL measured. Long-term personal air pollution exposures were assigned to each patient retrospectively, for O3, NO2, PM2.5 [and PM10, based on geo-coded residential addresses. Logistic regression models assessed the association of air pollutants’ levels with AE-IPF and inflammatory mediators adjusting for potential confounders. Results 118 IPF patients (mean age 72 ± 8.3 years) were analyzed. We detected positive significant associations between AE-IPF and a 10 μg/m3 increase in previous-year mean level of NO2 (OR = 1.52, 95%CI:1.15–2.0, p = 0.003), PM2.5 (OR = 2.21, 95%CI:1.16–4.20, p = 0.016) and PM10 (OR = 2.18, 95%CI:1.15–4.15, p = 0.017) independent of age, gender, smoking, lung function and antifibrotic treatment. Introduction of TL in all models of a subgroup of 36 patients did not change the direction of the observed associations. Finally, O3 was positively associated with %change of IL-4 (p = 0.014) whilst PM2.5, PM10 and NO2 were inversely associated with %changes of IL-4 (p = 0.003, p = 0.003, p = 0.032) and osteopontin (p = 0.013, p = 0.013, p = 0.085) respectively. Conclusions Long-term personal exposure to increased concentrations of air pollutants is an independent risk factor of AE-IPF. Inflammatory mediators implicated in lung repair mechanisms are involved.

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3