Prenatal exposure to consumer product chemical mixtures and size for gestational age at delivery

Author:

Bommarito P. A.,Welch B. M.,Keil A. P.,Baker G. P.,Cantonwine D. E.,McElrath T. F.,Ferguson K. K.ORCID

Abstract

Abstract Background While fetal growth is a tightly regulated process, it is sensitive to environmental exposures that occur during pregnancy. Many commonly used consumer products contain chemicals that can disturb processes underlying fetal growth. However, mixtures of these chemicals have been minimally examined. We investigated associations between prenatal exposure to 33 consumer product chemicals (nine organophosphate ester flame retardant [OPE] metabolites, 12 phthalate metabolites, and 12 phenols) and the odds of small- or large-for-gestational age (SGA and LGA) births. Methods This case-control study was comprised of SGA (N = 31), LGA (N = 28), and appropriate for gestational age control (N = 31) births selected from the larger LIFECODES cohort. Biomarkers of exposure to consumer product chemicals were quantified in maternal urine collected from up to three study visits during pregnancy. In a single-pollutant approach, odds ratios (OR) and 95% confidence intervals (CI) of SGA and LGA associated with an interquartile range (IQR)-increase in exposure biomarkers were estimated using multinomial logistic regression. In a multi-pollutant approach, quantile g-computation was used to jointly estimate the OR (95% CI) of SGA and LGA per simultaneous one quartile-change in all biomarkers belonging to each chemical class. Results Among the 33 biomarkers analyzed, 20 were detected in at least 50% of the participants. After adjusting for potential confounders, we observed reduced odds of LGA in association with higher urinary concentrations of several exposure biomarkers. For example, an IQR-increase in the OPE metabolite, diphenyl phosphate, was associated with lower odds of LGA (OR: 0.40 [95% CI: 0.18, 0.87]). Using quantile g-computation, we estimated lower odds of an LGA birth for higher OPE metabolite concentrations (OR: 0.49 [95% CI: 0.27, 0.89]) and phthalate metabolite concentrations (OR: 0.23 [95% CI: 0.07, 0.73]). Associations between consumer product chemicals and SGA were largely null. Conclusions Joint exposure to OPEs and phthalates was associated with lower odds of delivering LGA. Associations with LGA could indicate a specific impact of these exposures on the high end of the birth weight spectrum. Future work to understand this nuance in the associations between consumer product chemical mixtures and fetal growth is warranted.

Funder

National Institute of Environmental Health Sciences

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3