Abstract
Abstract
Background
Understanding context specific heat-health risks in urban areas is important, especially given anticipated severe increases in summer temperatures due to climate change effects. We investigate social inequalities in the association between daily temperatures and mortality in summer in the city of Turin for the period 1982–2018 among different social and demographic groups such as sex, age, educational level, marital status and household occupants.
Methods
Mortality data are represented by individual all-cause mortality counts for the summer months between 1982 and 2018. Socioeconomic level and daily mean temperature were assigned to each deceased. A time series Poisson regression with distributed lag non-linear models was fitted to capture the complex nonlinear dependency between daily mortality and temperature in summer. The mortality risk due to heat is represented by the Relative Risk (RR) at the 99th percentile of daily summer temperatures for each population subgroup.
Results
All-cause mortality risk is higher among women (1.88; 95% CI = 1.77, 2.00) and the elderly (2.13; 95% CI = 1.94, 2.33). With regard to education, the highest significant effects for men is observed among higher education levels (1.66; 95% CI = 1.38, 1.99), while risks for women is higher for the lower educational level (1.93; 95% CI = 1.79, 2.08). Results on marital status highlighted a stronger association for widower in men (1.66; 95% CI = 1.38, 2.00) and for separated and divorced in women (2.11; 95% CI = 1.51, 2.94). The risk ratio of household occupants reveals a stronger association for men who lived alone (1.61; 95% CI = 1.39, 1.86), while for women results are almost equivalent between alone and not alone groups.
Conclusions
The associations between heat and mortality is unequal across different aspects of social vulnerability, and, inter alia, factors influencing the population vulnerability to temperatures can be related to demographic, social, and economic aspects. A number of issues are identified and recommendations for the prioritisation of further research are provided. A better knowledge of these effect modifiers is needed to identify the axes of social inequality across the most vulnerable population sub-groups.
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Reference86 articles.
1. Ballester J, Robine JM, Herrmann FR, Rodó X. Long-term projections and acclimatization scenarios of temperature-related mortality in Europe. Nat Commun. 2011;2(1):1–8.
2. WMO, WHO. Heatwaves and Health: Guidance on Warning-System Development, vol. 44; 2015. p. 114. Available from: http://www.who.int/globalchange/publications/WMO_WHO_Heat_Health_Guidance_2015.pdf.
3. IPCC. National systems for managing the risks from climate extremes and disasters. Vol. 9781107025, Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change. 2012. 339–92.
4. Watts N, Amann M, Ayeb-Karlsson S, Belesova K, Boykoff M, Byass P, et al. The 2019 report of the lancet Countown on health and climate change. Lancet. 2019;394(10211):1836–78.
5. Hooyberghs H, Lauwaet D, Lefebvre W, Maiheu B, De Ridder K, Gonzalez-Aparicio I, et al. D 4.2 Aggolomeration-scale urban climate and air quality projections. RAMSES Proj. 2015; RAMSES-D.
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献