A family of partial-linear single-index models for analyzing complex environmental exposures with continuous, categorical, time-to-event, and longitudinal health outcomes

Author:

Wang Yuyan,Wu Yinxiang,Jacobson Melanie H.,Lee Myeonggyun,Jin Peng,Trasande Leonardo,Liu MenglingORCID

Abstract

Abstract Background Statistical methods to study the joint effects of environmental factors are of great importance to understand the impact of correlated exposures that may act synergistically or antagonistically on health outcomes. This study proposes a family of statistical models under a unified partial-linear single-index (PLSI) modeling framework, to assess the joint effects of environmental factors for continuous, categorical, time-to-event, and longitudinal outcomes. All PLSI models consist of a linear combination of exposures into a single index for practical interpretability of relative direction and importance, and a nonparametric link function for modeling flexibility. Methods We presented PLSI linear regression and PLSI quantile regression for continuous outcome, PLSI generalized linear regression for categorical outcome, PLSI proportional hazards model for time-to-event outcome, and PLSI mixed-effects model for longitudinal outcome. These models were demonstrated using a dataset of 800 subjects from NHANES 2003–2004 survey including 8 environmental factors. Serum triglyceride concentration was analyzed as a continuous outcome and then dichotomized as a binary outcome. Simulations were conducted to demonstrate the PLSI proportional hazards model and PLSI mixed-effects model. The performance of PLSI models was compared with their counterpart parametric models. Results PLSI linear, quantile, and logistic regressions showed similar results that the 8 environmental factors had both positive and negative associations with triglycerides, with a-Tocopherol having the most positive and trans-b-carotene having the most negative association. For the time-to-event and longitudinal settings, simulations showed that PLSI models could correctly identify directions and relative importance for the 8 environmental factors. Compared with parametric models, PLSI models got similar results when the link function was close to linear, but clearly outperformed in simulations with nonlinear effects. Conclusions We presented a unified family of PLSI models to assess the joint effects of exposures on four commonly-used types of outcomes in environmental research, and demonstrated their modeling flexibility and effectiveness, especially for studying environmental factors with mixed directional effects and/or nonlinear effects. Our study has expanded the analytical toolbox for investigating the complex effects of environmental factors. A practical contribution also included a coherent algorithm for all proposed PLSI models with R codes available.

Funder

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3