Individual and mixture associations of perfluoroalkyl substances on liver function biomarkers in the Canadian Health Measures Survey

Author:

Borghese Michael M.,Liang Chun Lei,Owen James,Fisher Mandy

Abstract

Abstract Background Perfluoroalkyl substances can disrupt hepatic metabolism and may be associated with liver function biomarkers. We examined individual and mixture associations of PFAS on liver function biomarkers in a representative sample of Canadian adults. We explored the potential for effect modification by sex and body mass index, as well as by physical activity level which may attenuate the deleterious effect of PFAS on metabolic disorders. Methods We analyzed data from participants aged 20–74 from the Canadian Health Measures Survey. We used linear regression to examine associations between plasma concentrations of PFOA, PFOS, PFHxS, PFNA, PFDA, and PFUDA on serum concentrations of aspartate aminotransferase (AST), gamma-glutamyltransferase (GGT), alkaline phosphatase (ALP), alanine aminotransferase (ALT) and total bilirubin. We used quantile g-computation to estimate associations with a PFAS mixture for each simultaneous, one-quartile change in PFAS concentrations. Results Each doubling of PFOA, PFOS, PFHxS, or PFNA concentrations was associated with higher AST, GGT, and ALP concentrations. Each doubling of PFOA concentrations was associated with 16.5% (95%CI: 10.4, 23.0) higher GGT concentrations among adults not meeting Canada’s physical activity guidelines vs. 6.6% (95%CI: -1.6, 15.5) among those meeting these guidelines. Sex and BMI also modified some associations, though to a lesser extent. We did not observe associations between ALT and PFOA (1.2% change; 95%CI: -2.5, 4.9), PFOS (2.2% change; 95%CI: -0.8, 5.3), or PFHxS (1.5% change; 95%CI: -0.4, 3.4). We also did not observe consistent associations for PFDA and PFUDA or with total bilirubin. In quantile g-computation models, each simultaneous one-quartile increase in the PFAS mixture was positively associated with AST (7.5% higher; 95%CI: 4.0, 10.4), GGT (9.7% higher; 95%CI: 1.7, 17.0), and ALP (2.8% higher; 95%CI: 0.5, 5.4). Conclusion Higher plasma concentrations of PFOA, PFOS, PFHxS, and PFNA – both individually and as a mixture – were associated with higher serum concentrations of liver function biomarkers. These results contribute to emerging evidence suggesting that higher levels of physical activity appear to be protective against the hepatotoxic effects of PFOA. This work contributes to a growing body of evidence supporting the hepatotoxic effects of PFAS.

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference63 articles.

1. Health Canada. Fifth Report on Human Biomonitoring of Environmental Chemicals in Canada [Internet]. 2019. Available from: https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/environmental-contaminants/fifth-report-human-biomonitoring.html. Cited 17 Mar 2021.

2. Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, de Voogt P, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag [Internet]. Wiley-Blackwell. 2011;7:513–41 Available from: (http://www.ncbi.nlm.nih.gov/pubmed/21793199). Cited 11 Jan 2019.

3. Trudel D, Horowitz L, Wormuth M, Scheringer M, Cousins IT, Hungerbühler K. Estimating Consumer Exposure to PFOS and PFOA. Risk Anal [Internet]. 2008;28:251–69. Available from: (http://www.ncbi.nlm.nih.gov/pubmed/18419647). Cited 11 Jan 2019.

4. Kannan K, Corsolini S, Falandysz J, Fillmann G, Kumar KS, Loganathan BG, et al. Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries. Environ Sci Technol [Internet]. American Chemical Society. 2004;38:4489–95. Available from: https://doi.org/10.1021/es0493446. Cited 10 May 2019.

5. Kato K, Wong L-Y, Jia LT, Kuklenyik Z, Calafat AM. Trends in Exposure to Polyfluoroalkyl Chemicals in the U.S. Population: 1999–2008. Environ Sci Technol [Internet]. 2011;45:8037–45. Available from: (http://www.ncbi.nlm.nih.gov/pubmed/21469664). Cited 10 May 2019.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3