NO2 and PM2.5 air pollution co-exposure and temperature effect modification on pre-mature mortality in advanced age: a longitudinal cohort study in China

Author:

Ji John S.,Liu Linxin,Zhang Junfeng,Kan Haidong,Zhao Bin,Burkart Katrin G.,Zeng Yi

Abstract

Abstract Background There is a discourse on whether air pollution mixture or air pollutant components are causally linked to increased mortality. In particular, there is uncertainty on whether the association of NO2 with mortality is independent of fine particulate matter (PM2.5). Furthermore, effect modification by temperature on air pollution-related mortality also needs more evidence. Methods We used the Chinese Longitudinal Healthy Longevity Study (CLHLS), a prospective cohort with geographical and socio-economic diversity in China. The participants were enrolled in 2008 or 2009 and followed up in 2011-2012, 2014, and 2017-2018. We used remote sensing and ground monitors to measure nitrogen dioxide (NO2), fine particulate matter (PM2.5) , and temperature. We used the Cox-proportional hazards model to examine the association between component and composite air pollution and all-cause mortality, adjusted for demographic characteristics, lifestyle, geographical attributes, and temperature. We used the restricted cubic spline to visualize the concentration–response curve. Results Our study included 11 835 individuals with an average age of 86.9 (SD: 11.4) at baseline. Over 55 606 person-years of follow-up, we observed 8 216 mortality events. The average NO2 exposure was 19.1 μg/m3 (SD: 14.1); the average PM2.5 exposure was 52.8 μg/m3 (SD: 15.9). In the single pollutant models, the mortality HRs (95% CI) for 10 μg/m3 increase in annual average NO2 or PM2.5 was 1.114 (1.085, 1.143) and 1.244 (1.221, 1.268), respectively. In the multi-pollutant model co-adjusting for NO2 and PM2.5, the HR for NO2 turned insignificant: 0.978 (0.950, 1.008), but HR for PM2.5 was not altered: 1.252 (1.227, 1.279). PM2.5 and higher mortality association was robust, regardless of NO2. When acccounting for particulate matter, NO2 exposure appeared to be harmful in places of colder climates and higher seasonal temperature variation. Conclusions We see a robust relationship of PM2.5 exposure and premature mortality in advance aged individuals, however, NO2 exposure and mortality was only harmful in places of colder climate such as northeast China, indicating evidence of effect modification by temperature. Analysis of NO2 without accounting for its collinearity with PM2.5, may lead to overestimation.

Funder

National Key R&D Program of China

National Natural Sciences Foundation of China

Duke/Duke-NUS Research Collaborations

U.S. National Institute of Aging of National Institute of Health

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference21 articles.

1. Mortimer K, Neugebauer R, Lurmann F, Alcorn S, Balmes J, Tager I. Air pollution and pulmonary function in asthmatic children: effects of prenatal and lifetime exposures. Epidemiology. 2008;19:550–2. https://doi.org/10.1097/EDE.0b013e31816a9dcb.

2. United States Environmental Protection Agency. Criteria Air Pollutants. 2021. https://www.epa.gov/criteria-air-pollutants.Accessed 03 Oct 2022.

3. World Health Organization. WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. 2005. https://apps.who.int/iris/handle/10665/69477.

4. World Health Organization. WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Geneva; 2021. https://apps.who.int/iris/handle/10665/345329.Accessed 03 Oct 2022.

5. Hesterberg TW, Bunn WB, McClellan RO, Hamade AK, Long CM, Valberg PA. Critical review of the human data on short-term nitrogen dioxide (NO2) exposures: evidence for NO2 no-effect levels. Crit Rev Toxicol. 2009;39:743–81. https://doi.org/10.3109/10408440903294945.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3