Assessing the health estimation capacity of air pollution exposure prediction models

Author:

Krall Jenna R.ORCID,Keller Joshua P.,Peng Roger D.

Abstract

Abstract Background The era of big data has enabled sophisticated models to predict air pollution concentrations over space and time. Historically these models have been evaluated using overall metrics that measure how close predictions are to monitoring data. However, overall methods are not designed to distinguish error at timescales most relevant for epidemiologic studies, such as day-to-day errors that impact studies of short-term health associations. Methods We introduce frequency band model performance, which quantifies health estimation capacity of air quality prediction models for time series studies of air pollution and health. Frequency band model performance uses a discrete Fourier transform to evaluate prediction models at timescales of interest. We simulated fine particulate matter (PM2.5), with errors at timescales varying from acute to seasonal, and health time series data. To compare evaluation approaches, we use correlations and root mean squared error (RMSE). Additionally, we assess health estimation capacity through bias and RMSE in estimated health associations. We apply frequency band model performance to PM2.5 predictions at 17 monitors in 8 US cities. Results In simulations, frequency band model performance rates predictions better (lower RMSE, higher correlation) when there is no error at a particular timescale (e.g., acute) and worse when error is added to that timescale, compared to overall approaches. Further, frequency band model performance is more strongly associated (R2 = 0.95) with health association bias compared to overall approaches (R2 = 0.57). For PM2.5 predictions in Salt Lake City, UT, frequency band model performance better identifies acute error that may impact estimated short-term health associations. Conclusions For epidemiologic studies, frequency band model performance provides an improvement over existing approaches because it evaluates models at the timescale of interest and is more strongly associated with bias in estimated health associations. Evaluating prediction models at timescales relevant for health studies is critical to determining whether model error will impact estimated health associations.

Funder

Thomas F. and Kate Miller Jeffress Memorial Trust

U.S. Environmental Protection Agency

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3