An analysis of past and future heatwaves based on a heat-associated mortality threshold: towards a heat health warning system

Author:

Kapwata Thandi,Gebreslasie Michael T.,Wright Caradee Y.

Abstract

AbstractHeatwaves can have severe impacts on human health extending from illness to mortality. These health effects are related to not only the physical phenomenon of heat itself but other characteristics such as frequency, intensity, and duration of heatwaves. Therefore, understanding heatwave characteristics is a crucial step in the development of heat-health warning systems (HHWS) that could prevent or reduce negative heat-related health outcomes. However, there are no South African studies that have quantified heatwaves with a threshold that incorporated a temperature metric based on a health outcome. To fill this gap, this study aimed to assess the spatial and temporal distribution and frequency of past (2014 – 2019) and future (period 2020 – 2039) heatwaves across South Africa. Heatwaves were defined using a threshold for diurnal temperature range (DTR) that was found to have measurable impacts on mortality. In the current climate, inland provinces experienced fewer heatwaves of longer duration and greater intensity compared to coastal provinces that experienced heatwaves of lower intensity. The highest frequency of heatwaves occurred during the austral summer accounting for a total of 150 events out of 270 from 2014 to 2019. The heatwave definition applied in this study also identified severe heatwaves across the country during late 2015 to early 2016 which was during the strongest El Niño event ever recorded to date. Record-breaking global temperatures were reported during this period; the North West province in South Africa was the worst affected experiencing heatwaves ranging from 12 to 77 days. Future climate analysis showed increasing trends in heatwave events with the greatest increases (80%—87%) expected to occur during summer months. The number of heatwaves occurring in cooler seasons is expected to increase with more events projected from the winter months of July and August, onwards. The findings of this study show that the identification of provinces and towns that experience intense, long-lasting heatwaves is crucial to inform development and implementation of targeted heat-health adaptation strategies. These findings could also guide authorities to prioritise vulnerable population groups such as the elderly and children living in high-risk areas likely to be affected by heatwaves.

Funder

South African Medical Research Council

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3