Exposure to arsenic at different life-stages and DNA methylation meta-analysis in buccal cells and leukocytes

Author:

Bozack Anne K.ORCID,Boileau Philippe,Wei Linqing,Hubbard Alan E.,Sillé Fenna C. M.,Ferreccio Catterina,Acevedo Johanna,Hou Lifang,Ilievski Vesna,Steinmaus Craig M.,Smith Martyn T.,Navas-Acien Ana,Gamble Mary V.,Cardenas Andres

Abstract

Abstract Background Arsenic (As) exposure through drinking water is a global public health concern. Epigenetic dysregulation including changes in DNA methylation (DNAm), may be involved in arsenic toxicity. Epigenome-wide association studies (EWAS) of arsenic exposure have been restricted to single populations and comparison across EWAS has been limited by methodological differences. Leveraging data from epidemiological studies conducted in Chile and Bangladesh, we use a harmonized data processing and analysis pipeline and meta-analysis to combine results from four EWAS. Methods DNAm was measured among adults in Chile with and without prenatal and early-life As exposure in PBMCs and buccal cells (N = 40, 850K array) and among men in Bangladesh with high and low As exposure in PBMCs (N = 32, 850K array; N = 48, 450K array). Linear models were used to identify differentially methylated positions (DMPs) and differentially variable positions (DVPs) adjusting for age, smoking, cell type, and sex in the Chile cohort. Probes common across EWAS were meta-analyzed using METAL, and differentially methylated and variable regions (DMRs and DVRs, respectively) were identified using comb-p. KEGG pathway analysis was used to understand biological functions of DMPs and DVPs. Results In a meta-analysis restricted to PBMCs, we identified one DMP and 23 DVPs associated with arsenic exposure; including buccal cells, we identified 3 DMPs and 19 DVPs (FDR < 0.05). Using meta-analyzed results, we identified 11 DMRs and 11 DVRs in PBMC samples, and 16 DMRs and 19 DVRs in PBMC and buccal cell samples. One region annotated to LRRC27 was identified as a DMR and DVR. Arsenic-associated KEGG pathways included lysosome, autophagy, and mTOR signaling, AMPK signaling, and one carbon pool by folate. Conclusions Using a two-step process of (1) harmonized data processing and analysis and (2) meta-analysis, we leverage four DNAm datasets from two continents of individuals exposed to high levels of As prenatally and during adulthood to identify DMPs and DVPs associated with arsenic exposure. Our approach suggests that standardizing analytical pipelines can aid in identifying biological meaningful signals.

Funder

National Institute of Environmental Health Sciences

National Cancer Institute

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference70 articles.

1. World Health Organization. Arsenic [Internet]. WHO Fact Sheets. 2012. Available from: http://www.who.int/mediacentre/factsheets/fs372/en/. Accessed 21 June 2021.

2. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. A review of human carcinogens. Arsenic, metals, fibres, and dusts: International Agency for Research on Cancer; 2012.

3. Moon KA, Guallar E, Umans JG, Devereux RB, Best LG, Francesconi KA, et al. Association between exposure to low to moderate arsenic levels and incident cardiovascular disease. Ann Intern Med. 2013;159(10):649–59. https://doi.org/10.7326/0003-4819-159-10-201311190-00719.

4. National Research Council. Critical aspects of EPA’s and IRIS assessment of inorganic arsenic, interim report [Internet]. Washington, DC: National Academies; 2013. Available from: https://www.nap.edu/catalog/18594/critical-aspects-of-epas-iris-assessment-of-inorganic-arsenic-interim

5. Bailey KA, Smith AH, Tokar EJ, Graziano JH, Kim K-W, Navasumrit P, et al. Mechanisms underlying latent disease risk associated with early-life arsenic exposure: current research trends and scientific gaps. Environ Health Perspect. 2016;124(2):170–5. https://doi.org/10.1289/ehp.1409360.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3