Application of probabilistic methods to address variability and uncertainty in estimating risks for non-cancer health effects

Author:

Nielsen Greylin H.,Heiger-Bernays Wendy J.,Levy Jonathan I.,White Roberta F.,Axelrad Daniel A.,Lam Juleen,Chartres Nicholas,Abrahamsson Dimitri Panagopoulos,Rayasam Swati D. G.,Shaffer Rachel M.,Zeise Lauren,Woodruff Tracey J.,Ginsberg Gary L.

Abstract

AbstractHuman health risk assessment currently uses the reference dose or reference concentration (RfD, RfC) approach to describe the level of exposure to chemical hazards without appreciable risk for non-cancer health effects in people. However, this “bright line” approach assumes that there is minimal risk below the RfD/RfC with some undefined level of increased risk at exposures above the RfD/RfC and has limited utility for decision-making. Rather than this dichotomous approach, non-cancer risk assessment can benefit from incorporating probabilistic methods to estimate the amount of risk across a wide range of exposures and define a risk-specific dose. We identify and review existing approaches for conducting probabilistic non-cancer risk assessments. Using perchloroethylene (PCE), a priority chemical for the U.S. Environmental Protection Agency under the Toxic Substances Control Act, we calculate risk-specific doses for the effects on cognitive deficits using probabilistic risk assessment approaches. Our probabilistic risk assessment shows that chronic exposure to 0.004 ppm PCE is associated with approximately 1-in-1,000 risk for a 5% reduced performance on the Wechsler Memory Scale Visual Reproduction subtest with 95% confidence. This exposure level associated with a 1-in-1000 risk for non-cancer neurocognitive deficits is lower than the current RfC for PCE of 0.0059 ppm, which is based on standard point of departure and uncertainty factor approaches for the same neurotoxic effects in occupationally exposed adults. We found that the population-level risk of cognitive deficit (indicating central nervous system dysfunction) is estimated to be greater than the cancer risk level of 1-in-100,000 at a similar chronic exposure level. The extension of toxicological endpoints to more clinically relevant endpoints, along with consideration of magnitude and severity of effect, will help in the selection of acceptable risk targets for non-cancer effects. We find that probabilistic approaches can 1) provide greater context to existing RfDs and RfCs by describing the probability of effect across a range of exposure levels including the RfD/RfC in a diverse population for a given magnitude of effect and confidence level, 2) relate effects of chemical exposures to clinical disease risk so that the resulting risk assessments can better inform decision-makers and benefit-cost analysis, and 3) better reflect the underlying biology and uncertainties of population risks.

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference42 articles.

1. U.S. Environmental Protection Agency. Guidelines for Carcinogen Risk Assessment. Washington, DC: U.S. Environmental Protection Agency Risk Assessment Forum; 2005.

2. U.S. Environmental Protection Agency. A review of the reference dose and reference concentration processes. Washington, DC: U.S. Environmental Protection Agency Risk Assessment Forum; 2002.

3. U.S. Environmental Protection Agency. Benchmark Dose Technical Guidance. Washington, DC: U.S. Environmental Protection Agency Risk Assessment Forum; 2012.

4. National Academies of Sciences. Toward a Unified Approach to Dose-Response Assessment. In: Science and Decisions: Advancing Risk Assessment. Washington, DC: The National Academies Press; 2009. p. 127–87.

5. White RH, Cote I, Zeise L, Fox M, Dominici F, Burke TA, et al. State-of-the-science workshop report: issues and approaches in low-dose-response extrapolation for environmental health risk assessment. Environ Health Perspect. 2009;117(2):283–7.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3