Author:
Rittweger Jörn,Gilardi Lorenza,Baltruweit Maxana,Dally Simon,Erbertseder Thilo,Mittag Uwe,Naeem Muhammad,Schmid Matthias,Schmitz Marie-Therese,Wüst Sabine,Dech Stefan,Jordan Jens,Antoni Tobias,Bittner Michael
Abstract
Abstract
Background
Influenza seasonality has been frequently studied, but its mechanisms are not clear. Urban in-situ studies have linked influenza to meteorological or pollutant stressors. Few studies have investigated rural and less polluted areas in temperate climate zones.
Objectives
We examined influences of medium-term residential exposure to fine particulate matter (PM2.5), NO2, SO2, air temperature and precipitation on influenza incidence.
Methods
To obtain complete spatial coverage of Baden-Württemberg, we modeled environmental exposure from data of the Copernicus Atmosphere Monitoring Service and of the Copernicus Climate Change Service. We computed spatiotemporal aggregates to reflect quarterly mean values at post-code level. Moreover, we prepared health insurance data to yield influenza incidence between January 2010 and December 2018. We used generalized additive models, with Gaussian Markov random field smoothers for spatial input, whilst using or not using quarter as temporal input.
Results
In the 3.85 million cohort, 513,404 influenza cases occurred over the 9-year period, with 53.6% occurring in quarter 1 (January to March), and 10.2%, 9.4% and 26.8% in quarters 2, 3 and 4, respectively. Statistical modeling yielded highly significant effects of air temperature, precipitation, PM2.5 and NO2. Computation of stressor-specific gains revealed up to 3499 infections per 100,000 AOK clients per year that are attributable to lowering ambient mean air temperature from 18.71 °C to 2.01 °C. Stressor specific gains were also substantial for fine particulate matter, yielding up to 502 attributable infections per 100,000 clients per year for an increase from 7.49 μg/m3 to 15.98 μg/m3.
Conclusions
Whilst strong statistical association of temperature with other stressors makes it difficult to distinguish between direct and mediated temperature effects, results confirm genuine effects by fine particulate matter on influenza infections for both rural and urban areas in a temperate climate. Future studies should attempt to further establish the mediating mechanisms to inform public health policies.
Funder
Deutsches Zentrum für Luft- und Raumfahrt
Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR)
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献