Author:
Mendy Angelico,Wilkerson Jesse,Salo Pӓivi M.,Zeldin Darryl C.,Thorne Peter S.
Abstract
Abstract
Background
Endotoxin is ubiquitous in the environment, but its clustering with indoor allergens is not well characterized. This study examined the clustering patterns of endotoxin with allergens in house dust and their association with asthma outcomes.
Methods
We analyzed data from 6963 participants of the 2005–2006 National Health and Nutrition Examination Survey. House dust sampled from bedroom floor and bedding was evaluated for endotoxin and allergens from fungi, cockroach, dog, cat, mites, and rodents. Two-step cluster analysis and logistic regressions were performed to identify the clustering patterns and their associations with current asthma and wheeze in the past 12 months, adjusting for covariates.
Results
Of the homes, 17.8% had low endotoxin and allergen levels in house dust (Cluster 1). High endotoxin level clustered with Alternaria and pet allergens in the homes of participants with a high socioeconomic status who own pets (Cluster 2) (48.9%). High endotoxin clustered with Aspergillus, dust mites, cockroach, and rodent allergens in the homes of participants with low socioeconomic status (Cluster 3) (33.3%). Compared to Cluster 1, Cluster 2 was associated with higher asthma prevalence (OR 1.42, 95% CI: 1.06–1.91) and wheeze (OR 1.32, 95% CI: 1.07–1.63). Cluster 3 was positively associated with wheeze only in participants sensitized to inhalant allergens (OR 1.42, 95% CI: 1.06–1.91) or exposed to tobacco smoke (OR 1.72, 95% CI: 1.15–2.60).
Conclusions
The clustering of endotoxin with allergens in dust from homes with pets or of people with low socioeconomic status is associated with asthma and wheeze.
Funder
National Institute of Environmental Health Sciences
Centers for Disease Control and Prevention
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Reference48 articles.
1. Pepe C, Foley S, Shannon J, Lemiere C, Olivenstein R, Ernst P, et al. Differences in airway remodeling between subjects with severe and moderate asthma. J Allergy Clin Immunol. 2005;116(3):544–9.
2. Soriano JB, Abajobir AA, Abate KH, Abera SF, Agrawal A, Ahmed MB, et al. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet Respir Med. 2017;5(9):691–706.
3. Centers for Disease Control and Prevention (CDC). Asthma. Data, Statistics, and Surveillance. Most Recent Asthma Data. https://www.cdc.gov/asthma/most_recent_data.htm. Accessed 15 Feb 2018.
4. Nunes C, Pereira AM, Morais-Almeida M. Asthma costs and social impact. Asthma Res Pract. 2017;3(1):1.
5. Fireman P. Symposium: Understanding Asthma Pathophysiology. Allergy Asthma Proc. 2003;24(2).
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献