Longitudinal follow-up of health effects among workers handling engineered nanomaterials: a panel study

Author:

Wu Wei-TeORCID,Li Lih-Ann,Tsou Tsui-Chun,Wang Shu-Li,Lee Hui-Ling,Shih Tung-Sheng,Liou Saou-Hsing

Abstract

Abstract Background Although no human illness to date is confirmed to be attributed to engineered nanoparticles, occupational epidemiological studies are needed to verify the health effects of nanoparticles. This study used a repeated measures design to explore the potential adverse health effects of workers handling nanomaterials. Methods Study population was 206 nanomaterial-handling workers and 108 unexposed controls, who were recruited from 14 nanotechnology plants. They were followed up no less than two times in four years. A questionnaire was used to collect potential confounders and detailed work conditions. Control banding was adopted to categorize risk level for each participant as a surrogate marker of exposure. Health hazard markers include cardiopulmonary dysfunction markers, inflammation and oxidative damage markers, antioxidant enzymes activity, and genotoxicity markers. The Generalized Estimating Equation model was applied to analyze repeated measurements. Results In comparison to the controls, a significant dose-dependent increase on risk levels for the change of superoxide dismutase (p<0.01) and a significant increase of glutathione peroxidase change in risk level 1 was found for nanomaterial-handling workers. However, the change of cardiovascular dysfunction, lung damages, inflammation, oxidative damages, neurobehavioral and genotoxic markers were not found to be significantly associated with nanomaterials handling in this panel study. Conclusions This repeated measurement study suggests that there was no evidence of potential adverse health effects under the existing workplace exposure levels among nanomaterials handling workers, except for the increase of antioxidant enzymes.

Funder

National Health Research Institutes of Taiwan

Institute of Occupational Safety and Health, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3