A phenome-wide scan reveals convergence of common and rare variant associations

Author:

Zhou Dan,Zhou Yuan,Xu Yue,Meng Ran,Gamazon Eric R.ORCID

Abstract

Abstract Background Common and rare variants contribute to the etiology of complex traits. However, the extent to which the phenotypic effects of common and rare variants involve shared molecular mediators remains poorly understood. The question is essential to the basic and translational goals of the science of genomics, with critical basic-science, methodological, and clinical consequences. Methods Leveraging the latest release of whole-exome sequencing (WES, for rare variants) and genome-wide association study (GWAS, for common variants) data from the UK Biobank, we developed a metric, the COmmon variant and RAre variant Convergence (CORAC) signature, to quantify the convergence for a broad range of complex traits. We characterized the relationship between CORAC and effective sample size across phenome-wide association studies. Results We found that the signature is positively correlated with effective sample size (Spearman ρ = 0.594, P < 2.2e − 16), indicating increased functional convergence of trait-associated genetic variation, across the allele frequency spectrum, with increased power. Sensitivity analyses, including accounting for heteroskedasticity and varying the number of detected association signals, further strengthened the validity of the finding. In addition, consistent with empirical data, extensive simulations showed that negative selection, in line with enhancing polygenicity, has a dampening effect on the convergence signature. Methodologically, leveraging the convergence leads to enhanced association analysis. Conclusions The presented framework for the convergence signature has important implications for fine-mapping strategies and drug discovery efforts. In addition, our study provides a blueprint for the expectation from future large-scale whole-genome sequencing (WGS)/WES and sheds methodological light on post-GWAS studies.

Funder

National Human Genome Research Institute

National Institute of General Medical Sciences

National Institute on Aging

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3