Mutation-Attention (MuAt): deep representation learning of somatic mutations for tumour typing and subtyping

Author:

Sanjaya Prima,Maljanen Katri,Katainen Riku,Waszak Sebastian M.,Ambrose J. C.,Arumugam P.,Bevers R.,Bleda M.,Boardman-Pretty F.,Boustred C. R.,Brittain H.,Brown M. A.,Caulfield M. J.,Chan G. C.,Giess A.,Griffin J. N.,Hamblin A.,Henderson S.,Hubbard T. J. P.,Jackson R.,Jones L. J.,Kasperaviciute D.,Kayikci M.,Kousathanas A.,Lahnstein L.,Lakey A.,Leigh S. E. A.,Leong I. U. S.,Leong F. J.,Maleady-Crowe F.,McEntagart M.,Minneci F.,Mitchell J.,Moutsianas L.,Mueller M.,Murugaesu N.,Need A. C.,O’Donovan P.,Odhams C. A.,Patch C.,Perez-Gil D.,Perez-Gil M. B.,Pullinger J.,Rahim T.,Rendon A.,Rogers T.,Savage K.,Sawant K.,Scott R. H.,Siddiq A.,Siddiq A.,Smith S. C.,Sosinsky A.,Stuckey A.,Tanguy M.,Taylor Tavares A. L.,Thomas E. R. A.,Thompson S. R.,Tucci A.,Welland M. J.,Williams E.,Witkowska K.,Wood S. M.,Zarowiecki M.,Aaltonen Lauri A.,Stegle Oliver,Korbel Jan O.,Pitkänen EsaORCID,

Abstract

Abstract Background Cancer genome sequencing enables accurate classification of tumours and tumour subtypes. However, prediction performance is still limited using exome-only sequencing and for tumour types with low somatic mutation burden such as many paediatric tumours. Moreover, the ability to leverage deep representation learning in discovery of tumour entities remains unknown. Methods We introduce here Mutation-Attention (MuAt), a deep neural network to learn representations of simple and complex somatic alterations for prediction of tumour types and subtypes. In contrast to many previous methods, MuAt utilizes the attention mechanism on individual mutations instead of aggregated mutation counts. Results We trained MuAt models on 2587 whole cancer genomes (24 tumour types) from the Pan-Cancer Analysis of Whole Genomes (PCAWG) and 7352 cancer exomes (20 types) from the Cancer Genome Atlas (TCGA). MuAt achieved prediction accuracy of 89% for whole genomes and 64% for whole exomes, and a top-5 accuracy of 97% and 90%, respectively. MuAt models were found to be well-calibrated and perform well in three independent whole cancer genome cohorts with 10,361 tumours in total. We show MuAt to be able to learn clinically and biologically relevant tumour entities including acral melanoma, SHH-activated medulloblastoma, SPOP-associated prostate cancer, microsatellite instability, POLE proofreading deficiency, and MUTYH-associated pancreatic endocrine tumours without these tumour subtypes and subgroups being provided as training labels. Finally, scrunity of MuAt attention matrices revealed both ubiquitous and tumour-type specific patterns of simple and complex somatic mutations. Conclusions Integrated representations of somatic alterations learnt by MuAt were able to accurately identify histological tumour types and identify tumour entities, with potential to impact precision cancer medicine.

Funder

Academy of Finland

Sigrid Juséliuksen Säätiö

Syöpäsäätiö

Paulon Säätiö

Norges Forskningsråd

European Molecular Biology Laboratory (EMBL) Hamburg

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3