Mutation-Attention (MuAt): deep representation learning of somatic mutations for tumour typing and subtyping
-
Published:2023-07-07
Issue:1
Volume:15
Page:
-
ISSN:1756-994X
-
Container-title:Genome Medicine
-
language:en
-
Short-container-title:Genome Med
Author:
Sanjaya Prima, Maljanen Katri, Katainen Riku, Waszak Sebastian M., Ambrose J. C., Arumugam P., Bevers R., Bleda M., Boardman-Pretty F., Boustred C. R., Brittain H., Brown M. A., Caulfield M. J., Chan G. C., Giess A., Griffin J. N., Hamblin A., Henderson S., Hubbard T. J. P., Jackson R., Jones L. J., Kasperaviciute D., Kayikci M., Kousathanas A., Lahnstein L., Lakey A., Leigh S. E. A., Leong I. U. S., Leong F. J., Maleady-Crowe F., McEntagart M., Minneci F., Mitchell J., Moutsianas L., Mueller M., Murugaesu N., Need A. C., O’Donovan P., Odhams C. A., Patch C., Perez-Gil D., Perez-Gil M. B., Pullinger J., Rahim T., Rendon A., Rogers T., Savage K., Sawant K., Scott R. H., Siddiq A., Siddiq A., Smith S. C., Sosinsky A., Stuckey A., Tanguy M., Taylor Tavares A. L., Thomas E. R. A., Thompson S. R., Tucci A., Welland M. J., Williams E., Witkowska K., Wood S. M., Zarowiecki M., Aaltonen Lauri A., Stegle Oliver, Korbel Jan O., Pitkänen EsaORCID,
Abstract
Abstract
Background
Cancer genome sequencing enables accurate classification of tumours and tumour subtypes. However, prediction performance is still limited using exome-only sequencing and for tumour types with low somatic mutation burden such as many paediatric tumours. Moreover, the ability to leverage deep representation learning in discovery of tumour entities remains unknown.
Methods
We introduce here Mutation-Attention (MuAt), a deep neural network to learn representations of simple and complex somatic alterations for prediction of tumour types and subtypes. In contrast to many previous methods, MuAt utilizes the attention mechanism on individual mutations instead of aggregated mutation counts.
Results
We trained MuAt models on 2587 whole cancer genomes (24 tumour types) from the Pan-Cancer Analysis of Whole Genomes (PCAWG) and 7352 cancer exomes (20 types) from the Cancer Genome Atlas (TCGA). MuAt achieved prediction accuracy of 89% for whole genomes and 64% for whole exomes, and a top-5 accuracy of 97% and 90%, respectively. MuAt models were found to be well-calibrated and perform well in three independent whole cancer genome cohorts with 10,361 tumours in total. We show MuAt to be able to learn clinically and biologically relevant tumour entities including acral melanoma, SHH-activated medulloblastoma, SPOP-associated prostate cancer, microsatellite instability, POLE proofreading deficiency, and MUTYH-associated pancreatic endocrine tumours without these tumour subtypes and subgroups being provided as training labels. Finally, scrunity of MuAt attention matrices revealed both ubiquitous and tumour-type specific patterns of simple and complex somatic mutations.
Conclusions
Integrated representations of somatic alterations learnt by MuAt were able to accurately identify histological tumour types and identify tumour entities, with potential to impact precision cancer medicine.
Funder
Academy of Finland Sigrid Juséliuksen Säätiö Syöpäsäätiö Paulon Säätiö Norges Forskningsråd European Molecular Biology Laboratory (EMBL) Hamburg
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine
Reference77 articles.
1. Singh MP, Rai S, Pandey A, Singh NK, Srivastava S. Molecular subtypes of colorectal cancer: an emerging therapeutic opportunity for personalized medicine. Genes Dis. 2021;8(2):133–45. 2. Jovčevska I. Next generation sequencing and machine learning technologies are painting the epigenetic portrait of glioblastoma. Front Oncol. 2020;10:798. 3. Kool M, Korshunov A, Remke M, Jones DTW, Schlanstein M, Northcott PA, et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol. 2012;123(4):473–84. 4. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. New England J Med. 2015;372(26):2509–20. 5. Syn NL, Teng MWL, Mok TSK, Soo RA. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 2017;18(12):e731–41.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|