A pan-cancer landscape of telomeric content shows that RAD21 and HGF alterations are associated with longer telomeres

Author:

Sharaf Radwa,Montesion Meagan,Hopkins Julia F.,Song Jiarong,Frampton Garrett M.,Albacker Lee A.ORCID

Abstract

Abstract Background Cancer cells can proliferate indefinitely through telomere maintenance mechanisms. These mechanisms include telomerase-dependent elongation, mediated by TERT activation, and alternative lengthening of telomeres (ALT), linked to loss of ATRX or DAXX. Methods We analyzed the telomeric content of 89,959 tumor samples within the Foundation Medicine dataset and investigated the genomic determinants of high telomeric content, linking them to clinical outcomes, when available. Results Telomeric content varied widely by disease type with leiomyosarcoma having the highest and Merkel cell carcinoma having the lowest telomeric content. In agreement with previous studies, telomeric content was significantly higher in samples with alterations in TERC, ATRX, and DAXX. We further identified that amplifications in two genes, RAD21 and HGF, were enriched in samples with high telomeric content, which was confirmed using the PCAWG/ICGC dataset. We identified the minimal amplified region associated with high telomeric content for RAD21 (8q23.1–8q24.12), which excludes MYC, and for HGF (7q21.11). Our results demonstrated that RAD21 and HGF exerted an additive telomere lengthening effect on samples with existing alterations in canonical genes previously associated with telomere elongation. Furthermore, patients with breast cancer who harbor RAD21 alterations had poor median overall survival and trended towards higher levels of Ki-67 staining. Conclusions This study highlights the importance of the role played by RAD21 (8q23.1–8q24.12) and HGF (7q21.11) in the lengthening of telomeres, supporting unlimited replication in tumors. These findings open avenues for work aimed at targeting this crucial pathway in tumorigenesis.

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3