A chromosomal connectome for psychiatric and metabolic risk variants in adult dopaminergic neurons

Author:

Espeso-Gil Sergio,Halene Tobias,Bendl Jaroslav,Kassim Bibi,Ben Hutta Gabriella,Iskhakova Marina,Shokrian Neda,Auluck Pavan,Javidfar Behnam,Rajarajan Prashanth,Chandrasekaran Sandhya,Peter Cyril J.,Cote Alanna,Birnbaum Rebecca,Liao Will,Borrman Tyler,Wiseman Jennifer,Bell Aaron,Bannon Michael J.,Roussos Panagiotis,Crary John F.,Weng Zhiping,Marenco Stefano,Lipska Barbara,Tsankova Nadejda M.,Huckins Laura,Jiang Yan,Akbarian SchahramORCID

Abstract

Abstract Background Midbrain dopaminergic neurons (MDN) represent 0.0005% of the brain’s neuronal population and mediate cognition, food intake, and metabolism. MDN are also posited to underlay the neurobiological dysfunction of schizophrenia (SCZ), a severe neuropsychiatric disorder that is characterized by psychosis as well as multifactorial medical co-morbidities, including metabolic disease, contributing to markedly increased morbidity and mortality. Paradoxically, however, the genetic risk sequences of psychosis and traits associated with metabolic disease, such as body mass, show very limited overlap. Methods We investigated the genomic interaction of SCZ with medical conditions and traits, including body mass index (BMI), by exploring the MDN’s “spatial genome,” including chromosomal contact landscapes as a critical layer of cell type-specific epigenomic regulation. Low-input Hi-C protocols were applied to 5–10 × 103 dopaminergic and other cell-specific nuclei collected by fluorescence-activated nuclei sorting from the adult human midbrain. Results The Hi-C-reconstructed MDN spatial genome revealed 11 “Euclidean hot spots” of clustered chromatin domains harboring risk sequences for SCZ and elevated BMI. Inter- and intra-chromosomal contacts interconnecting SCZ and BMI risk sequences showed massive enrichment for brain-specific expression quantitative trait loci (eQTL), with gene ontologies, regulatory motifs and proteomic interactions related to adipogenesis and lipid regulation, dopaminergic neurogenesis and neuronal connectivity, and reward- and addiction-related pathways. Conclusions We uncovered shared nuclear topographies of cognitive and metabolic risk variants. More broadly, our PsychENCODE sponsored Hi-C study offers a novel genomic approach for the study of psychiatric and medical co-morbidities constrained by limited overlap of their respective genetic risk architectures on the linear genome.

Funder

National Institute of Health

Publisher

Springer Science and Business Media LLC

Subject

Genetics(clinical),Genetics,Molecular Biology,Molecular Medicine

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3