Rapid molecular diagnostics of tuberculosis resistance by targeted stool sequencing

Author:

Sibandze Doctor B.,Kay AlexanderORCID,Dreyer Viola,Sikhondze Welile,Dlamini Qiniso,DiNardo Andrew,Mtetwa Godwin,Lukhele Bhekumusa,Vambe Debrah,Lange Christoph,Glenn Dlamini Muyalo,Ness Tara,Mejia Rojelio,Kalsdorf Barbara,Heyckendorf Jan,Kuhns Martin,Maurer Florian P.,Dlamini Sindisiwe,Maphalala Gugu,Niemann Stefan,Mandalakas Anna

Abstract

Abstract Background Stool is an important diagnostic specimen for tuberculosis in populations who struggle to provide sputum, such as children or people living with HIV. However, the culture of Mycobacterium tuberculosis (M. tuberculosis) complex strains from stool perform poorly. This limits the opportunity for phenotypic drug resistance testing with this specimen. Therefore, reliable molecular methods are urgently needed for comprehensive drug resistance testing on stool specimens. Methods We evaluated the performance of targeted next-generation sequencing (tNGS, Deeplex® Myc-TB) for the detection of mutations associated with M. tuberculosis complex drug resistance on DNA isolated from stool specimens provided by participants from a prospective cohort of patients treated for tuberculosis in Eswatini (n = 66; 56 with and 10 participants without M. tuberculosis complex DNA detected in stool by real-time quantitative PCR), and an independent German validation cohort of participants with culture-confirmed tuberculosis (n = 21). Results The tNGS assay detected M. tuberculosis complex DNA in 38 of 56 (68%) samples; for 28 of 38 (74%) samples, a full M. tuberculosis complex drug resistance prediction report was obtained. There was a high degree of concordance with sputum phenotypic drug susceptibility results (κ = 0.82). The ability to predict resistance was concentration-dependent and successful in 7/10 (70%), 18/25 (72%), and 3/21 (14%) of samples with stool PCR concentration thresholds of > 100 femtogram per microliter (fg/μl), 1 to 100 fg/μl, and < 1 fg/μl, respectively (p = 0.0004). The German cohort confirmed these results and demonstrated a similarly high concordance between stool tNGS and sputum phenotypic drug susceptibility results (κ = 0.84). Conclusions tNGS can identify drug resistance from stool provided by tuberculosis patients. This affords the opportunity to obtain critical diagnostic information for tuberculosis patients who struggle to provide respiratory specimens.

Funder

Fogarty International Center

Thrasher Research Fund

National Institute of Allergy and Infectious Diseases

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3