High-throughput functional mapping of variants in an arrhythmia gene, KCNE1, reveals novel biology

Author:

Muhammad Ayesha,Calandranis Maria E.,Li Bian,Yang Tao,Blackwell Daniel J.,Harvey M. Lorena,Smith Jeremy E.,Daniel Zerubabell A.,Chew Ashli E.,Capra John A.,Matreyek Kenneth A.,Fowler Douglas M.,Roden Dan M.,Glazer Andrew M.ORCID

Abstract

Abstract Background KCNE1 encodes a 129-residue cardiac potassium channel (IKs) subunit. KCNE1 variants are associated with long QT syndrome and atrial fibrillation. However, most variants have insufficient evidence of clinical consequences and thus limited clinical utility. Methods In this study, we leveraged the power of variant effect mapping, which couples saturation mutagenesis with high-throughput sequencing, to ascertain the function of thousands of protein-coding KCNE1 variants. Results We comprehensively assayed KCNE1 variant cell surface expression (2554/2709 possible single-amino-acid variants) and function (2534 variants). Our study identified 470 loss- or partial loss-of-surface expression and 574 loss- or partial loss-of-function variants. Of the 574 loss- or partial loss-of-function variants, 152 (26.5%) had reduced cell surface expression, indicating that most functionally deleterious variants affect channel gating. Nonsense variants at residues 56–104 generally had WT-like trafficking scores but decreased functional scores, indicating that the latter half of the protein is dispensable for protein trafficking but essential for channel function. 22 of the 30 KCNE1 residues (73%) highly intolerant of variation (with > 70% loss-of-function variants) were in predicted close contact with binding partners KCNQ1 or calmodulin. Our functional assay data were consistent with gold standard electrophysiological data (ρ =  − 0.64), population and patient cohorts (32/38 presumed benign or pathogenic variants with consistent scores), and computational predictors (ρ =  − 0.62). Our data provide moderate-strength evidence for the American College of Medical Genetics/Association of Molecular Pathology functional criteria for benign and pathogenic variants. Conclusions Comprehensive variant effect maps of KCNE1 can both provide insight into IKs channel biology and help reclassify variants of uncertain significance.

Funder

National Human Genome Research Institute

National Heart, Lung, and Blood Institute

American Heart Association

National Institute of General Medical Sciences

National Cancer Institute

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3