Author:
Vasudevan Praveen,Wolfien Markus,Lemcke Heiko,Lang Cajetan Immanuel,Skorska Anna,Gaebel Ralf,Galow Anne-Marie,Koczan Dirk,Lindner Tobias,Bergmann Wendy,Mueller-Hilke Brigitte,Vollmar Brigitte,Krause Bernd Joachim,Wolkenhauer Olaf,Steinhoff Gustav,David Robert
Abstract
Abstract
Background
The immune response is a crucial factor for mediating the benefit of cardiac cell therapies. Our previous research showed that cardiomyocyte transplantation alters the cardiac immune response and, when combined with short-term pharmacological CCR2 inhibition, resulted in diminished functional benefit. However, the specific role of innate immune cells, especially CCR2 macrophages on the outcome of cardiomyocyte transplantation, is unclear.
Methods
We compared the cellular, molecular, and functional outcome following cardiomyocyte transplantation in wildtype and T cell- and B cell-deficient Rag2del mice. The cardiac inflammatory response was assessed using flow cytometry. Gene expression profile was assessed using single-cell and bulk RNA sequencing. Cardiac function and morphology were determined using magnetic resonance tomography and immunohistochemistry respectively.
Results
Compared to wildtype mice, Rag2del mice show an increased innate immune response at steady state and disparate macrophage response after MI. Subsequent single-cell analyses after MI showed differences in macrophage development and a lower prevalence of CCR2 expressing macrophages. Cardiomyocyte transplantation increased NK cells and monocytes, while reducing CCR2−MHC-IIlo macrophages. Consequently, it led to increased mRNA levels of genes involved in extracellular remodelling, poor graft survival, and no functional improvement. Using machine learning-based feature selection, Mfge8 and Ccl7 were identified as the primary targets underlying these effects in the heart.
Conclusions
Our results demonstrate that the improved functional outcome following cardiomyocyte transplantation is dependent on a specific CCR2 macrophage response. This work highlights the need to study the role of the immune response for cardiomyocyte cell therapy for successful clinical translation.
Funder
FORUN Program of Rostock University Medical Centre
Deutsche Forschungsgemeinschaft
Josef and Käthe Klinz Foundation
Damp Stiftung
Deutsche Herzstiftung
EU Structural Fund
Bundesministerium für Bildung und Forschung
European Regional Development Fund
Universität Rostock
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献