Abstract
Abstract
Background
Genetic penetrance is the probability of a phenotype when harbouring a particular pathogenic variant. Accurate penetrance estimates are important across biomedical fields including genetic counselling, disease research, and gene therapy. However, existing approaches for penetrance estimation require, for instance, large family pedigrees or availability of large databases of people affected and not affected by a disease.
Methods
We present a method for penetrance estimation in autosomal dominant phenotypes. It examines the distribution of a variant among people affected (cases) and unaffected (controls) by a phenotype within population-scale data and can be operated using cases only by considering family disease history. It is validated through simulation studies and candidate variant-disease case studies.
Results
Our method yields penetrance estimates which align with those obtained via existing approaches in the Parkinson’s disease LRRK2 gene and pulmonary arterial hypertension BMPR2 gene case studies. In the amyotrophic lateral sclerosis case studies, examining penetrance for variants in the SOD1 and C9orf72 genes, we make novel penetrance estimates which correspond closely to understanding of the disease.
Conclusions
The present approach broadens the spectrum of traits for which reliable penetrance estimates can be obtained. It has substantial utility for facilitating the characterisation of disease risks associated with rare variants with an autosomal dominant inheritance pattern. The yielded estimates avoid any kinship-specific effects and can circumvent ascertainment biases common when sampling rare variants among control populations.
Funder
Medical Research Council
Economic and Social Research Council
Maudsley Charity
Guy's and St Thomas' Charity
Horizon 2020
MND Scotland
South London and Maudsley NHS Foundation Trust
Motor Neurone Disease Association
National Institute for Health and Care Research
Spastic Paraplegia Foundation
Rosetrees Trust
Darby Rimmer MND Foundation
Alzheimer’s Research UK
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献