Predicting the presence of coronary plaques featuring high-risk characteristics using polygenic risk scores and targeted proteomics in patients with suspected coronary artery disease

Author:

Møller Peter Loof,Rohde Palle Duun,Dahl Jonathan Nørtoft,Rasmussen Laust Dupont,Nissen Louise,Schmidt Samuel Emil,McGilligan Victoria,Gudbjartsson Daniel F.,Stefansson Kari,Holm Hilma,Bentzon Jacob Fog,Bøttcher Morten,Winther Simon,Nyegaard MetteORCID

Abstract

Abstract Background The presence of coronary plaques with high-risk characteristics is strongly associated with adverse cardiac events beyond the identification of coronary stenosis. Testing by coronary computed tomography angiography (CCTA) enables the identification of high-risk plaques (HRP). Referral for CCTA is presently based on pre-test probability estimates including clinical risk factors (CRFs); however, proteomics and/or genetic information could potentially improve patient selection for CCTA and, hence, identification of HRP. We aimed to (1) identify proteomic and genetic features associated with HRP presence and (2) investigate the effect of combining CRFs, proteomics, and genetics to predict HRP presence. Methods Consecutive chest pain patients (n = 1462) undergoing CCTA to diagnose obstructive coronary artery disease (CAD) were included. Coronary plaques were assessed using a semi-automatic plaque analysis tool. Measurements of 368 circulating proteins were obtained with targeted Olink panels, and DNA genotyping was performed in all patients. Imputed genetic variants were used to compute a multi-trait multi-ancestry genome-wide polygenic score (GPSMult). HRP presence was defined as plaques with two or more high-risk characteristics (low attenuation, spotty calcification, positive remodeling, and napkin ring sign). Prediction of HRP presence was performed using the glmnet algorithm with repeated fivefold cross-validation, using CRFs, proteomics, and GPSMult as input features. Results HRPs were detected in 165 (11%) patients, and 15 input features were associated with HRP presence. Prediction of HRP presence based on CRFs yielded a mean area under the receiver operating curve (AUC) ± standard error of 73.2 ± 0.1, versus 69.0 ± 0.1 for proteomics and 60.1 ± 0.1 for GPSMult. Combining CRFs with GPSMult increased prediction accuracy (AUC 74.8 ± 0.1 (P = 0.004)), while the inclusion of proteomics provided no significant improvement to either the CRF (AUC 73.2 ± 0.1, P = 1.00) or the CRF + GPSMult (AUC 74.6 ± 0.1, P = 1.00) models, respectively. Conclusions In patients with suspected CAD, incorporating genetic data with either clinical or proteomic data improves the prediction of high-risk plaque presence. Trial registration https://clinicaltrials.gov/ct2/show/NCT02264717 (September 2014).

Funder

European Union Regional Development Fund (ERDF) EU Sustainable Competitiveness Programme for Northern Ireland

Northern Ireland Public Health Agency

Novo Nordisk Foundation Clinical Emerging Investigator grant

Novo Nordisk Foundation Start Package grants for faculty recruitment

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3