Pan-cancer identification of clinically relevant genomic subtypes using outcome-weighted integrative clustering

Author:

Arora Arshi,Olshen Adam B.,Seshan Venkatraman E.,Shen RonglaiORCID

Abstract

Abstract Background Comprehensive molecular profiling has revealed somatic variations in cancer at genomic, epigenomic, transcriptomic, and proteomic levels. The accumulating data has shown clearly that molecular phenotypes of cancer are complex and influenced by a multitude of factors. Conventional unsupervised clustering applied to a large patient population is inevitably driven by the dominant variation from major factors such as cell-of-origin or histology. Translation of these data into clinical relevance requires more effective extraction of information directly associated with patient outcome. Methods Drawing from ideas in supervised text classification, we developed survClust, an outcome-weighted clustering algorithm for integrative molecular stratification focusing on patient survival. survClust was performed on 18 cancer types across multiple data modalities including somatic mutation, DNA copy number, DNA methylation, and mRNA, miRNA, and protein expression from the Cancer Genome Atlas study to identify novel prognostic subtypes. Results Our analysis identified the prognostic role of high tumor mutation burden with concurrently high CD8 T cell immune marker expression and the aggressive clinical behavior associated with CDKN2A deletion across cancer types. Visualization of somatic alterations, at a genome-wide scale (total mutation burden, mutational signature, fraction genome altered) and at the individual gene level, using circomap further revealed indolent versus aggressive subgroups in a pan-cancer setting. Conclusions Our analysis has revealed prognostic molecular subtypes not previously identified by unsupervised clustering. The algorithm and tools we developed have direct utility toward patient stratification based on tumor genomics to inform clinical decision-making. The survClust software tool is available at https://github.com/arorarshi/survClust.

Funder

National Cancer Institute

Publisher

Springer Science and Business Media LLC

Subject

Genetics(clinical),Genetics,Molecular Biology,Molecular Medicine

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3