Abstract
Abstract
Background
The enrichment of Gram-negative bacteria of oral origin in the esophageal microbiome has been associated with the development of metaplasia. However, to date, no study has comprehensively assessed the relationships between the esophageal microbiome and the host.
Methods
Here, we examine the esophageal microenvironment in gastro-esophageal reflux disease and metaplasia using multi-omics strategies targeting the microbiome and host transcriptome, followed by targeted culture, comparative genomics, and host-microbial interaction studies of bacterial signatures of interest.
Results
Profiling of the host transcriptome from esophageal mucosal biopsies revealed profound changes during metaplasia. Importantly, five biomarkers showed consistent longitudinal changes with disease progression from reflux disease to metaplasia. We showed for the first time that the esophageal microbiome is distinct from the salivary microbiome and the enrichment of Campylobacter species as a consistent signature in disease across two independent cohorts. Shape fitting and matrix correlation identified associations between the microbiome and host transcriptome profiles, with a novel co-exclusion relationship found between Campylobacter and napsin B aspartic peptidase. Targeted culture of Campylobacter species from the same cohort revealed a subset of isolates to have a higher capacity to survive within primary human macrophages. Comparative genomic analyses showed these isolates could be differentiated by specific genomic features, one of which was validated to be associated with intracellular fitness. Screening for these Campylobacter strain-specific signatures in shotgun metagenomics data from another cohort showed an increase in prevalence with disease progression. Comparative transcriptomic analyses of primary esophageal epithelial cells exposed to the Campylobacter isolates revealed expression changes within those infected with strains with high intracellular fitness that could explain the increased likelihood of disease progression.
Conclusions
We provide a comprehensive assessment of the esophageal microenvironment, identifying bacterial strain-specific signatures with high relevance to progression of metaplasia.
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine
Reference83 articles.
1. Arnold M, Abnet CC, Neale RE, Vignat J, Giovannucci EL, McGlynn KA, et al. Global burden of 5 major types of gastrointestinal cancer. Gastroenterology. 2020;159(1):335–49 e15. https://doi.org/10.1053/j.gastro.2020.02.068.
2. He H, Chen N, Hou Y, Wang Z, Zhang Y, Zhang G, et al. Trends in the incidence and survival of patients with esophageal cancer: A SEER database analysis. Thorac Cancer. 2020;11(5):1121–8. https://doi.org/10.1111/1759-7714.13311.
3. Januszewicz W, Fitzgerald RC. Barrett's oesophagus and oesophageal adenocarcinoma. Medicine (Abingdon). 2019;47:275–85.
4. Tan MC, Mansour N, White DL, Sisson A, El-Serag HB, Thrift AP. Systematic review with meta-analysis: prevalence of prior and concurrent Barrett’s oesophagus in oesophageal adenocarcinoma patients. Aliment Pharmacol Ther. 2020;52(1):20–36. https://doi.org/10.1111/apt.15760.
5. GBD 2017 Gastro-oesophageal Reflux Disease Collaborators. The global, regional, and national burden of gastro-oesophageal reflux disease in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol. 2020;5:561-81.