Abstract
Abstract
Background
Cancer neoantigens are expressed only in cancer cells and presented on the tumor cell surface in complex with major histocompatibility complex (MHC) class I proteins for recognition by cytotoxic T cells. Accurate and rapid identification of neoantigens play a pivotal role in cancer immunotherapy. Although several in silico tools for neoantigen prediction have been presented, limitations of these tools exist.
Results
We developed pTuneos, a computational pipeline for prioritizing tumor neoantigens from next-generation sequencing data. We tested the performance of pTuneos on the melanoma cancer vaccine cohort data and tumor-infiltrating lymphocyte (TIL)-recognized neopeptide data. pTuneos is able to predict the MHC presentation and T cell recognition ability of the candidate neoantigens, and the actual immunogenicity of single-nucleotide variant (SNV)-based neopeptides considering their natural processing and presentation, surpassing the existing tools with a comprehensive and quantitative benchmark of their neoantigen prioritization performance and running time. pTuneos was further tested on The Cancer Genome Atlas (TCGA) cohort data as well as the melanoma and non-small cell lung cancer (NSCLC) cohort data undergoing checkpoint blockade immunotherapy. The overall neoantigen immunogenicity score proposed by pTuneos is demonstrated to be a powerful and pan-cancer marker for survival prediction compared to traditional well-established biomarkers.
Conclusions
In summary, pTuneos provides the state-of-the-art one-stop and user-friendly solution for prioritizing SNV-based candidate neoepitopes, which could help to advance research on next-generation cancer immunotherapies and personalized cancer vaccines. pTuneos is available at https://github.com/bm2-lab/pTuneos, with a Docker version for quick deployment at https://cloud.docker.com/u/bm2lab/repository/docker/bm2lab/ptuneos.
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献