Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1
-
Published:2022-01-19
Issue:1
Volume:14
Page:
-
ISSN:1756-994X
-
Container-title:Genome Medicine
-
language:en
-
Short-container-title:Genome Med
Author:
Restuadi Restuadi, Steyn Frederik J., Kabashi Edor, Ngo Shyuan T., Cheng Fei-Fei, Nabais Marta F., Thompson Mike J., Qi Ting, Wu Yang, Henders Anjali K., Wallace Leanne, Bye Chris R., Turner Bradley J., Ziser Laura, Mathers Susan, McCombe Pamela A., Needham Merrilee, Schultz David, Kiernan Matthew C., van Rheenen Wouter, van den Berg Leonard H., Veldink Jan H., Ophoff Roel, Gusev Alexander, Zaitlen Noah, McRae Allan F., Henderson Robert D., Wray Naomi R., Giacomotto Jean, Garton Fleur C.ORCID
Abstract
Abstract
Background
Amyotrophic lateral sclerosis (ALS) is a complex, late-onset, neurodegenerative disease with a genetic contribution to disease liability. Genome-wide association studies (GWAS) have identified ten risk loci to date, including the TNIP1/GPX3 locus on chromosome five. Given association analysis data alone cannot determine the most plausible risk gene for this locus, we undertook a comprehensive suite of in silico, in vivo and in vitro studies to address this.
Methods
The Functional Mapping and Annotation (FUMA) pipeline and five tools (conditional and joint analysis (GCTA-COJO), Stratified Linkage Disequilibrium Score Regression (S-LDSC), Polygenic Priority Scoring (PoPS), Summary-based Mendelian Randomisation (SMR-HEIDI) and transcriptome-wide association study (TWAS) analyses) were used to perform bioinformatic integration of GWAS data (Ncases = 20,806, Ncontrols = 59,804) with ‘omics reference datasets including the blood (eQTLgen consortium N = 31,684) and brain (N = 2581). This was followed up by specific expression studies in ALS case-control cohorts (microarray Ntotal = 942, protein Ntotal = 300) and gene knockdown (KD) studies of human neuronal iPSC cells and zebrafish-morpholinos (MO).
Results
SMR analyses implicated both TNIP1 and GPX3 (p < 1.15 × 10−6), but there was no simple SNP/expression relationship. Integrating multiple datasets using PoPS supported GPX3 but not TNIP1. In vivo expression analyses from blood in ALS cases identified that lower GPX3 expression correlated with a more progressed disease (ALS functional rating score, p = 5.5 × 10−3, adjusted R2 = 0.042, Beffect = 27.4 ± 13.3 ng/ml/ALSFRS unit) with microarray and protein data suggesting lower expression with risk allele (recessive model p = 0.06, p = 0.02 respectively). Validation in vivo indicated gpx3 KD caused significant motor deficits in zebrafish-MO (mean difference vs. control ± 95% CI, vs. control, swim distance = 112 ± 28 mm, time = 1.29 ± 0.59 s, speed = 32.0 ± 2.53 mm/s, respectively, p for all < 0.0001), which were rescued with gpx3 expression, with no phenotype identified with tnip1 KD or gpx3 overexpression.
Conclusions
These results support GPX3 as a lead ALS risk gene in this locus, with more data needed to confirm/reject a role for TNIP1. This has implications for understanding disease mechanisms (GPX3 acts in the same pathway as SOD1, a well-established ALS-associated gene) and identifying new therapeutic approaches. Few previous examples of in-depth investigations of risk loci in ALS exist and a similar approach could be applied to investigate future expected GWAS findings.
Funder
National Health and Medical Research Council National Institutes of Health H2020 European Research Council National Institute of Mental Health Rebecca L. Cooper Medical Research Foundation FightMND
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine
Reference90 articles.
1. Taylor JP, Brown RH Jr, Cleveland DW. Decoding ALS: from genes to mechanism. Nature. 2016;539(7628):197–206. https://doi.org/10.1038/nature20413. 2. Trabjerg BB, Garton FC, van Rheenen W, Fang F, Henderson RD, Mortensen PB, et al. ALS in Danish registries. Neurol Genet. 2020;6(2):e398. https://doi.org/10.1212/NXG.0000000000000398. 3. van Rheenen W, Shatunov A, Dekker AM, McLaughlin RL, Diekstra FP, Pulit SL, et al. Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nat Genet. 2016;48(9):1043–8. https://doi.org/10.1038/ng.3622. 4. Benyamin B, He J, Zhao Q, Gratten J, Garton F, Leo PJ, et al. Cross-ethnic meta-analysis identifies association of the GPX3-TNIP1 locus with amyotrophic lateral sclerosis. Nat Commun. 2017;8(1):611. https://doi.org/10.1038/s41467-017-00471-1. 5. Bulik-Sullivan BK, Loh P-R, Finucane HK, Ripke S, Yang J, Patterson N, et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47(3):291–5. https://doi.org/10.1038/ng.3211.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|