Author:
Chen Rui,Yang Zhihui,Liu Jiewei,Cai Xin,Huo Yongxia,Zhang Zhijun,Li Ming,Chang Hong,Luo Xiong-Jian
Abstract
Abstract
Background
Genome-wide association studies (GWASs) have identified multiple risk loci for bipolar disorder (BD). However, pinpointing functional (or causal) variants in the reported risk loci and elucidating their regulatory mechanisms remain challenging.
Methods
We first integrated chromatin immunoprecipitation sequencing (ChIP-Seq) data from human brain tissues (or neuronal cell lines) and position weight matrix (PWM) data to identify functional single-nucleotide polymorphisms (SNPs). Then, we verified the regulatory effects of these transcription factor (TF) binding–disrupting SNPs (hereafter referred to as “functional SNPs”) through a series of experiments, including reporter gene assays, allele-specific expression (ASE) analysis, TF knockdown, CRISPR/Cas9-mediated genome editing, and expression quantitative trait loci (eQTL) analysis. Finally, we overexpressed PACS1 (whose expression was most significantly associated with the identified functional SNPs rs10896081 and rs3862386) in mouse primary cortical neurons to investigate if PACS1 affects dendritic spine density.
Results
We identified 16 functional SNPs (in 9 risk loci); these functional SNPs disrupted the binding of 7 TFs, for example, CTCF and REST binding was frequently disrupted. We then identified the potential target genes whose expression in the human brain was regulated by these functional SNPs through eQTL analysis. Of note, we showed dysregulation of some target genes of the identified TF binding–disrupting SNPs in BD patients compared with controls, and overexpression of PACS1 reduced the density of dendritic spines, revealing the possible biological mechanisms of these functional SNPs in BD.
Conclusions
Our study identifies functional SNPs in some reported risk loci and sheds light on the regulatory mechanisms of BD risk variants. Further functional characterization and mechanistic studies of these functional SNPs and candidate genes will help to elucidate BD pathogenesis and develop new therapeutic approaches and drugs.
Funder
the distinguished young scientists grant of the yunnan province
National Nature Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献