Annotation of cell types (ACT): a convenient web server for cell type annotation

Author:

Quan Fei,Liang Xin,Cheng Mingjiang,Yang Huan,Liu Kun,He Shengyuan,Sun Shangqin,Deng Menglan,He Yanzhen,Liu Wei,Wang Shuai,Zhao Shuxiang,Deng Lantian,Hou Xiaobo,Zhang Xinxin,Xiao YunORCID

Abstract

Abstract Background The advancement of single-cell sequencing has progressed our ability to solve biological questions. Cell type annotation is of vital importance to this process, allowing for the analysis and interpretation of enormous single-cell datasets. At present, however, manual cell annotation which is the predominant approach remains limited by both speed and the requirement of expert knowledge. Methods To address these challenges, we constructed a hierarchically organized marker map through manually curating over 26,000 cell marker entries from about 7000 publications. We then developed WISE, a weighted and integrated gene set enrichment method, to integrate the prevalence of canonical markers and ordered differentially expressed genes of specific cell types in the marker map. Benchmarking analysis suggested that our method outperformed state-of-the-art methods. Results By integrating the marker map and WISE, we developed a user-friendly and convenient web server, ACT (http://xteam.xbio.top/ACT/ or http://biocc.hrbmu.edu.cn/ACT/), which only takes a simple list of upregulated genes as input and provides interactive hierarchy maps, together with well-designed charts and statistical information, to accelerate the assignment of cell identities and made the results comparable to expert manual annotation. Besides, a pan-tissue marker map was constructed to assist in cell assignments in less-studied tissues. Applying ACT to three case studies showed that all cell clusters were quickly and accurately annotated, and multi-level and more refined cell types were identified. Conclusions We developed a knowledge-based resource and a corresponding method, together with an intuitive graphical web interface, for cell type annotation. We believe that ACT, emerging as a powerful tool for cell type annotation, would be widely used in single-cell research and considerably accelerate the process of cell type identification.

Funder

National Natural Science Foundation of China

National Science Foundation of Heilongjiang Province

HMU Marshal Initiative Funding

China Postdoctoral Science Foundation

Heilongjiang Postdoctoral Foundation

Fundamental Research Funds for the Provincial Universities of Heilongjiang

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3