Long-read sequencing reveals the landscape of aberrant alternative splicing and novel therapeutic target in colorectal cancer

Author:

Sun Qiang,Han Ye,He Jianxing,Wang Jie,Ma Xuejie,Ning Qianqian,Zhao Qing,Jin Qian,Yang Lili,Li Shuang,Li Yang,Zhi Qiaoming,Zheng Junnian,Dong Dong

Abstract

Abstract Background Alternative splicing complexity plays a vital role in carcinogenesis and cancer progression. Improved understanding of novel splicing events and the underlying regulatory mechanisms may contribute new insights into developing new therapeutic strategies for colorectal cancer (CRC). Methods Here, we combined long-read sequencing technology with short-read RNA-seq methods to investigate the transcriptome complexity in CRC. By using experiment assays, we explored the function of newly identified splicing isoform TIMP1 Δ4-5. Moreover, a CRISPR/dCasRx-based strategy to induce the TIMP1 exon 4–5 exclusion was introduced to inhibit neoplasm growth. Results A total of 90,703 transcripts were identified, of which > 62% were novel compared with current transcriptome annotations. These novel transcripts were more likely to be sample specific, expressed at relatively lower levels with more exons, and oncogenes displayed a characteristic to generate more transcripts in CRC. Clinical outcome data analysis showed that 1472 differentially expressed alternative splicing events (DEAS) were tightly associated with CRC patients’ prognosis, and many novel isoforms were likely to be important determinants for patient survival. Among these, newly identified splicing isoform TIMP1 Δ4-5 was significantly downregulated in CRC. Further in vitro and in vivo assays demonstrated that ectopic expression of TIMP1 Δ4-5 significantly suppresses tumor cell growth and metastasis. Serine/arginine-rich splicing factor 1 (SRSF1) acts as a onco-splicing regulator through sustaining the inclusion of TIMP1 exon 4–5. Furthermore, CRISPR/dCasRx-based strategies designed to induce TIMP1 exon 4–5 exclusion have the potential to restrain the CRC growth. Conclusions This data provides a rich resource for deeper studies of gastrointestinal malignancies. Newly identified splicing isoform TIMP1 Δ4-5 plays an important role in mediating CRC progression and may be a potential therapy target in CRC.

Funder

National Key R&D Program of China

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3