Abstract
Abstract
Background
Despite the acceleration of somatic driver gene discovery facilitated by recent large-scale tumor sequencing data, the contribution of inherited variants remains largely unexplored, primarily focusing on previously known cancer predisposition genes (CPGs) due to the low statistical power associated with detecting rare pathogenic variant-phenotype associations.
Methods
Here, we introduce a generalized log-regression model to measure the excess of pathogenic variants within genes in cancer patients compared to control samples. It aims to measure gene-level cancer risk enrichment by collapsing rare pathogenic variants after controlling the population differences across samples.
Results
In this study, we investigate whether pathogenic variants in Mendelian disease-associated genes (OMIM genes) are enriched in cancer patients compared to controls. Utilizing data from PCAWG and the 1,000 Genomes Project, we identify 103 OMIM genes demonstrating significant enrichment of pathogenic variants in cancer samples (FDR 20%). Through an integrative approach considering three distinct properties, we classify these CPG-like OMIM genes into four clusters, indicating potential diverse mechanisms underlying tumor progression. Further, we explore the function of PAH (a key metabolic enzyme associated with Phenylketonuria), the gene exhibiting the highest prevalence of pathogenic variants in a pan-cancer (1.8%) compared to controls (0.6%).
Conclusions
Our findings suggest a possible cancer progression mechanism through metabolic profile alterations. Overall, our data indicates that pathogenic OMIM gene variants contribute to cancer progression and introduces new CPG classifications potentially underpinning diverse tumorigenesis mechanisms.
Funder
Agencia Estatal de Investigación
Spanish National Plan for Scientific and Technical Research and Innovation
Centro de Biología Molecular Severo Ochoa
Korea Health Industry Development Institute
National Research Foundation of Korea
College of Medicine, Seoul National University
Seoul National University Hospital
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献