Participant-derived cell line transcriptomic analyses and mouse studies reveal a role for ZNF335 in plasma cholesterol statin response
-
Published:2024-07-26
Issue:1
Volume:16
Page:
-
ISSN:1756-994X
-
Container-title:Genome Medicine
-
language:en
-
Short-container-title:Genome Med
Author:
Theusch ElizabethORCID, Ting Flora Y., Qin Yuanyuan, Stevens Kristen, Naidoo Devesh, King Sarah M., Yang Neil V., Orr Joseph, Han Brenda Y., Cyster Jason G., Chen Yii-Der I., Rotter Jerome I., Krauss Ronald M., Medina Marisa W.
Abstract
Abstract
Background
Statins lower circulating low-density lipoprotein cholesterol (LDLC) levels and reduce cardiovascular disease risk. Though highly efficacious in general, there is considerable inter-individual variation in statin efficacy that remains largely unexplained.
Methods
To identify novel genes that may modulate statin-induced LDLC lowering, we used RNA-sequencing data from 426 control- and 2 µM simvastatin-treated lymphoblastoid cell lines (LCLs) derived from European and African American ancestry participants of the Cholesterol and Pharmacogenetics (CAP) 40 mg/day 6-week simvastatin clinical trial (ClinicalTrials.gov Identifier: NCT00451828). We correlated statin-induced changes in LCL gene expression with plasma LDLC statin response in the corresponding CAP participants. For the most correlated gene identified (ZNF335), we followed up in vivo by comparing plasma cholesterol levels, lipoprotein profiles, and lipid statin response between wild-type mice and carriers of a hypomorphic (partial loss of function) missense mutation in Zfp335 (the mouse homolog of ZNF335).
Results
The statin-induced expression changes of 147 human LCL genes were significantly correlated to the plasma LDLC statin responses of the corresponding CAP participants in vivo (FDR = 5%). The two genes with the strongest correlations were zinc finger protein 335 (ZNF335 aka NIF-1, rho = 0.237, FDR-adj p = 0.0085) and CCR4-NOT transcription complex subunit 3 (CNOT3, rho = 0.233, FDR-adj p = 0.0085). Chow-fed mice carrying a hypomorphic missense (R1092W; aka bloto) mutation in Zfp335 had significantly lower non-HDL cholesterol levels than wild-type C57BL/6J mice in a sex combined model (p = 0.04). Furthermore, male (but not female) mice carrying the Zfp335R1092W allele had significantly lower total and HDL cholesterol levels than wild-type mice. In a separate experiment, wild-type mice fed a control diet for 4 weeks and a matched simvastatin diet for an additional 4 weeks had significant statin-induced reductions in non-HDLC (−43 ± 18% and −23 ± 19% for males and females, respectively). Wild-type male (but not female) mice experienced significant reductions in plasma LDL particle concentrations, while male mice carrying Zfp335R1092W allele(s) exhibited a significantly blunted LDL statin response.
Conclusions
Our in vitro and in vivo studies identified ZNF335 as a novel modulator of plasma cholesterol levels and statin response, suggesting that variation in ZNF335 activity could contribute to inter-individual differences in statin clinical efficacy.
Funder
National Heart, Lung, and Blood Institute National Institute of General Medical Sciences National Institute of Diabetes and Digestive and Kidney Diseases American Heart Association
Publisher
Springer Science and Business Media LLC
Reference46 articles.
1. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, Himmelfarb CD, Khera A, Lloyd-Jones D, McEvoy JW, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140:e596–646. 2. Simon JA, Lin F, Hulley SB, Blanche PJ, Waters D, Shiboski S, Rotter JI, Nickerson DA, Yang H, Saad M, Krauss RM. Phenotypic predictors of response to simvastatin therapy among African-Americans and Caucasians: the Cholesterol and Pharmacogenetics (CAP) Study. Am J Cardiol. 2006;97:843–50. 3. Chasman DI, Giulianini F, Macfadyen J, Barratt BJ, Nyberg F, Ridker PM. Genetic determinants of statin-induced low-density lipoprotein cholesterol reduction: the justification for the use of statins in prevention: an intervention trial evaluating rosuvastatin (JUPITER) trial. Circ Cardiovasc Genet. 2012;5:257–64. 4. Deshmukh HA, Colhoun HM, Johnson T, McKeigue PM, Betteridge DJ, Durrington PN, Fuller JH, Livingstone S, Charlton-Menys V, Neil A, et al. Genome-wide association study of genetic determinants of LDL-c response to atorvastatin therapy: importance of Lp(a). J Lipid Res. 2012;53:1000–11. 5. Postmus I, Trompet S, Deshmukh HA, Barnes MR, Li X, Warren HR, Chasman DI, Zhou K, Arsenault BJ, Donnelly LA, et al. Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins. Nat Commun. 2014;5:5068.
|
|