Prostate cancers with distinct transcriptional programs in Black and White men

Author:

Kim Minhyung,Tamukong Patrick,Galvan Gloria Cecilia,Yang Qian,De Hoedt Amanda,Freeman Michael R.,You Sungyong,Freedland Stephen

Abstract

Abstract Background Black men are at a higher risk of prostate cancer (PC) diagnosis and present with more high-grade PC than White men in an equal access setting. This study aimed to identify differential transcriptional regulation between Black and White men with PC. Methods We performed microarray of radical prostatectomy tissue blocks from 305 Black and 238 White men treated at the Durham Veterans Affairs Medical Center. Differential expression, gene set enrichment analysis, master regulator analysis, and network modeling were conducted to compare gene expression by race. Findings were validated using external datasets that are available in the Gene Expression Omnibus (GEO) database. The first was a multi-institutional cohort of 1152 prostate cancer patients (596 Black, 556 White) with microarray data (GEO ID: GSE169038). The second was an Emory cohort of 106 patients (22 Black, 48 White, 36 men of unknown race) with RNA-seq data (GEO ID: GSE54460). Additionally, we analyzed androgen receptor (AR) chromatin binding profiles using paired AR ChIP-Seq datasets from Black and White men (GEO IDs: GSE18440 and GSE18441). Results We identified 871 differentially expressed genes between Black and White men. White men had higher activity of MYC-related pathways, while Black men showed increased activity of inflammation, steroid hormone responses, and cancer progression-related pathways. We further identified the top 10 transcription factors (TFs) in Black patients, which formed a transcriptional regulatory network centered on the AR. The activities of this network and the pathways were significantly different in Black vs. White men across multiple cohorts and PC molecular subtypes. Conclusions These findings suggest PC in Black and White men have distinct tumor transcriptional profiles. Furthermore, a highly interactive TF network centered on AR drives differential gene expression in Black men. Additional study is needed to understand the degree to which these differences in transcriptional regulatory elements contribute to PC health disparities.

Funder

National Cancer Institute

U.S. Department of Defense

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3