Identification of TBX15 as an adipose master trans regulator of abdominal obesity genes

Author:

Pan David Z.,Miao Zong,Comenho Caroline,Rajkumar Sandhya,Koka Amogha,Lee Seung Hyuk T.,Alvarez Marcus,Kaminska Dorota,Ko Arthur,Sinsheimer Janet S.,Mohlke Karen L.,Mancuso Nicholas,Muñoz-Hernandez Linda Liliana,Herrera-Hernandez Miguel,Tusié-Luna Maria Teresa,Aguilar-Salinas Carlos,Pietiläinen Kirsi H.,Pihlajamäki Jussi,Laakso Markku,Garske Kristina M.,Pajukanta PäiviORCID

Abstract

Abstract Background Obesity predisposes individuals to multiple cardiometabolic disorders, including type 2 diabetes (T2D). As body mass index (BMI) cannot reliably differentiate fat from lean mass, the metabolically detrimental abdominal obesity has been estimated using waist-hip ratio (WHR). Waist-hip ratio adjusted for body mass index (WHRadjBMI) in turn is a well-established sex-specific marker for abdominal fat and adiposity, and a predictor of adverse metabolic outcomes, such as T2D. However, the underlying genes and regulatory mechanisms orchestrating the sex differences in obesity and body fat distribution in humans are not well understood. Methods We searched for genetic master regulators of WHRadjBMI by employing integrative genomics approaches on human subcutaneous adipose RNA sequencing (RNA-seq) data (n ~ 1400) and WHRadjBMI GWAS data (n ~ 700,000) from the WHRadjBMI GWAS cohorts and the UK Biobank (UKB), using co-expression network, transcriptome-wide association study (TWAS), and polygenic risk score (PRS) approaches. Finally, we functionally verified our genomic results using gene knockdown experiments in a human primary cell type that is critical for adipose tissue function. Results Here, we identified an adipose gene co-expression network that contains 35 obesity GWAS genes and explains a significant amount of polygenic risk for abdominal obesity and T2D in the UKB (n = 392,551) in a sex-dependent way. We showed that this network is preserved in the adipose tissue data from the Finnish Kuopio Obesity Study and Mexican Obesity Study. The network is controlled by a novel adipose master transcription factor (TF), TBX15, a WHRadjBMI GWAS gene that regulates the network in trans. Knockdown of TBX15 in human primary preadipocytes resulted in changes in expression of 130 network genes, including the key adipose TFs, PPARG and KLF15, which were significantly impacted (FDR < 0.05), thus functionally verifying the trans regulatory effect of TBX15 on the WHRadjBMI co-expression network. Conclusions Our study discovers a novel key function for the TBX15 TF in trans regulating an adipose co-expression network of 347 adipose, mitochondrial, and metabolically important genes, including PPARG, KLF15, PPARA, ADIPOQ, and 35 obesity GWAS genes. Thus, based on our converging genomic, transcriptional, and functional evidence, we interpret the role of TBX15 to be a main transcriptional regulator in the adipose tissue and discover its importance in human abdominal obesity.

Funder

National Heart, Lung, and Blood Institute

National Institute of Diabetes and Digestive and Kidney Diseases

National Cancer Institute

American Heart Association

National Institute of General Medical Sciences

Howard Hughes Medical Institute

National Human Genome Research Institute

Academy of Finland

Publisher

Springer Science and Business Media LLC

Subject

Genetics(clinical),Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3