Author:
Bhattacharyya Dipto,Sinha Ragini,Ghanta Srijani,Chakraborty Amrita,Hazra Saptarshi,Chattopadhyay Sharmila
Abstract
Abstract
Background
Podophyllotoxin (PTOX), the precursor for semi-synthesis of cancer therapeutics like etoposide, teniposide and etophos, is primarily obtained from an endangered medicinal herb, Podophyllum hexandrum Royle. PTOX, a lignan is biosynthetically derived from the phenylpropanoid pathway. The aim of this study is to investigate changes in the P. hexandrum cell proteome potentially related to PTOX accumulation in response to methyl jasmonate (MeJA) elicitation. High-resolution two-dimensional gel electrophoresis (2-DE) followed by colloidal Coomassie staining and mass spectrometric analysis was used to detect statistically significant changes in cell’s proteome.
Result
The HPLC analysis showed approximately 7–8 fold change in accumulation of PTOX, in the 12day old cell suspension culture (i.e. after 9days of elicitation) elicited with 100 μM MeJA as compared to the control. Using 2-DE a total of 233 spots was detected, out of which 105 spots were identified by MALDI TOF-TOF MS/MS. Data were subjected to functional annotation from a biological point of view through KEGG. The phenylpropanoid and monolignol pathway enzymes were identified, amongst these, chalcone synthase, polyphenol oxidase, caffeoyl CoA 3-O-methyltransferase, S-adenosyl-L-methionine-dependent methyltransferases, caffeic acid-O-methyl transferase etc. are noted as important. The relation of other differentially accumulated proteins with varied effects caused by elicitors on P. hexandrum cells namely stress and defense related protein, transcription and DNA replication and signaling are also discussed.
Conclusions
Elicitor-induced PTOX accumulation in P. hexandrum cell cultures provides a responsive model system to profile modulations in proteins related to phenylpropanoid/monolignol biosynthesis and other defense responses. Present findings form a baseline for future investigation on a non-sequenced medicinal herb P. hexandrum at molecular level.
Publisher
Springer Science and Business Media LLC
Subject
Molecular Biology,Biochemistry
Reference79 articles.
1. Chatterji R: A note on germination of Podophyllum seeds. Econ Bot 1952, 36: 4.
2. Giri A, Narasu ML: Production of podophyllotoxin from Podophyllum hexandrum: a potential natural product for clinically useful anticancer drugs. Cytotechnology 2000, 34: 17–26. 10.1023/A:1008138230896
3. Stahelin HF, von Wartburg A: The chemical and biological route from podophyllotoxin glucoside to etoposide: ninth Cain memorial Award lecture. Cancer Res 1991, 51: 5–15.
4. Lerndal T, Svensson B: A clinical study of CPH 82 vs methotrexate in early rheumatoid arthritis. Rheumatology (Oxford) 2000, 39: 316–320. 10.1093/rheumatology/39.3.316
5. Empt U, Alfermann AW, Pras N, Petersen M: The use of plant cell cultures for the production of podophyllotoxin and related lignans. J Appl Bot 2000, 74: 145–150.
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献