Author:
Mok Flora SY,Thiyagarajan Vengatesen,Qian Pei-Yuan
Abstract
Abstract
Background
While the larval-juvenile transition (metamorphosis) in the spionid polychaete Pseudopolydora vexillosa involves gradual morphological changes and does not require substantial development of juvenile organs, the opposite occurs in the barnacle Balanus amphitrite. We hypothesized that the proteome changes during metamorphosis in the spionids are less drastic than that in the barnacles. To test this, proteomes of pre-competent larvae, competent larvae (ready to metamorphose), and juveniles of P. vexillosa were compared using 2-dimensional gel electrophoresis (2-DE), and they were then compared to those of the barnacle.
Results
Unlike the significant changes found during barnacle metamorphosis, proteomes of competent P. vexillosa larvae were more similar to those of their juveniles. Pre-competent larvae had significantly fewer protein spots (384 spots), while both competent larvae and juveniles expressed about 660 protein spots each. Proteins up-regulated during competence identified by MALDI-TOF/TOF analysis included a molecular chaperon (calreticulin), a signal transduction regulator (tyrosin activation protein), and a tissue-remodeling enzyme (metallopeptidase).
Conclusions
This was the first time to study the protein expression patterns during the metamorphosis of a marine polychaete and to compare the proteomes of marine invertebrates that have different levels of morphological changes during metamorphosis. The findings provide promising initial steps towards the development of a proteome database for marine invertebrate metamorphosis, thus deciphering the possible mechanisms underlying larval metamorphosis in non-model marine organisms.
Publisher
Springer Science and Business Media LLC
Subject
Molecular Biology,Biochemistry
Reference55 articles.
1. Chia FS, Rice ME: Settlement and metamorphosis of marine invertebrate larvae. New York: Elselvier; 1978.
2. Snelgrove PVR, Grassle JF, Grassle JP, Petrecca RF, Stocks KI: The role of colonization in establishing patterns community composition and diversity in shallow-water sedimentary communities. J Mar Res 2001, 59: 813–831. 10.1357/002224001762674953
3. Fuentes J, López JL, Mosquera E, Vázquez J, Villalba A, Alvarez G: Growth, mortality, pathological conditions and protein expression of Mytilus edulis an M. galloprovincialis cosses cultured in the Ria d Arousa (NW of Spain). Aquaculture 2002, 213: 233–251. 10.1016/S0044-8486(02)00046-7
4. Fusetani N, Clare AS: Antifouling Compounds. In Marine Molecular Biotechnology. Edited by: Muller WEG. Berlin: Springer; 2006:5–6.
5. Okazaki Y, Shizuri Y: Structures of six cDNA expressed specifically at cyprid larvae of barnacles Balanus amphitrite . Gene 2000, 250: 127–135. 10.1016/S0378-1119(00)00184-0
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献