Profiling and annotation of human kidney glomerulus proteome

Author:

Cui Zenyui,Yoshida Yutaka,Xu Bo,Zhang Ying,Nameta Masaaki,Magdeldin Sameh,Makiguchi Tomoo,Ikoma Toshikazu,Fujinaka Hidehiko,Yaoita Eishin,Yamamoto Tadashi

Abstract

Abstract Background The comprehensive analysis of human kidney glomerulus we previously performed using highly purified glomeruli, provided a dataset of 6,686 unique proteins representing 2,966 distinct genes. This dataset, however, contained considerable redundancy resulting from identification criteria under which all the proteins matched with the same set of peptides and its subset were reported as identified proteins. In this study we reanalyzed the raw data using the Mascot search engine and highly stringent criteria in order to select proteins with the highest scores matching peptides with scores exceeding the “Identity Threshold” and one or more unique peptides. This enabled us to exclude proteins with lower scores which only matched the same set of peptides or its subset. This approach provided a high-confidence, non-redundant dataset of identified proteins for extensive profiling, annotation, and comparison with other proteome datasets that can provide biologically relevant knowledge of glomerulus proteome. Results Protein identification using the Mascot search engine under highly stringent, computational strategy generated a non-redundant dataset of 1,817 proteins representing 1,478 genes. These proteins were represented by 2-D protein array specifying observed molecular weight and isoelectric point range of identified proteins to demonstrate differences in the observed and calculated physicochemical properties. Characteristics of glomerulus proteome could be illustrated by GO analysis and protein classification. The depth of proteomic analysis was well documented via comparison of the dynamic range of identified proteins with other proteomic analyses of human glomerulus, as well as a high coverage of biologically important pathways. Comparison of glomerulus proteome with human plasma and urine proteomes, provided by comprehensive analysis, suggested the extent and characteristics of proteins contaminated from plasma and excreted into urine, respectively. Among the latter proteins, several were demonstrated to be highly or specifically localized in the glomerulus by cross-reference analysis with the Human Protein Atlas database, and could be biomarker candidates for glomerular injury. Furthermore, comparison of ortholog proteins identified in human and mouse glomeruli suggest some biologically significant differences in glomerulus proteomes between the two species. Conclusions A high-confidence, non-redundant dataset of proteins created by comprehensive proteomic analysis could provide a more extensive understanding of human glomerulus proteome and could be useful as a resource for the discovery of biomarkers and disease-relevant proteins.

Publisher

Springer Science and Business Media LLC

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3