Comprehensive analysis of the mouse renal cortex using two-dimensional HPLC – tandem mass spectrometry

Author:

Zhao Yingxin,Denner Larry,Haidacher Sigmund J,LeJeune Wanda S,Tilton Ronald G

Abstract

Abstract Background Proteomic methodologies increasingly have been applied to the kidney to map the renal cortical proteome and to identify global changes in renal proteins induced by diseases such as diabetes. While progress has been made in establishing a renal cortical proteome using 1-D or 2-DE and mass spectrometry, the number of proteins definitively identified by mass spectrometry has remained surprisingly small. Low coverage of the renal cortical proteome as well as our interest in diabetes-induced changes in proteins found in the renal cortex prompted us to perform an in-depth proteomic analysis of mouse renal cortical tissue. Results We report a large scale analysis of mouse renal cortical proteome using SCX prefractionation strategy combined with HPLC – tandem mass spectrometry. High-confidence identification of ~2,000 proteins, including cytoplasmic, nuclear, plasma membrane, extracellular and unknown/unclassified proteins, was obtained by separating tryptic peptides of renal cortical proteins into 60 fractions by SCX prior to LC-MS/MS. The identified proteins represented the renal cortical proteome with no discernible bias due to protein physicochemical properties, subcellular distribution, biological processes, or molecular function. The highest ranked molecular functions were characteristic of tubular epithelium, and included binding, catalytic activity, transporter activity, structural molecule activity, and carrier activity. Comparison of this renal cortical proteome with published human urinary proteomes demonstrated enrichment of renal extracellular, plasma membrane, and lysosomal proteins in the urine, with a lack of intracellular proteins. Comparison of the most abundant proteins based on normalized spectral abundance factor (NSAF) in this dataset versus a published glomerular proteome indicated enrichment of mitochondrial proteins in the former and cytoskeletal proteins in the latter. Conclusion A whole tissue extract of the mouse kidney cortex was analyzed by an unbiased proteomic approach, yielding a dataset of ~2,000 unique proteins identified with strict criteria to ensure a high level of confidence in protein identification. As a result of extracting all proteins from the renal cortex, we identified an exceptionally wide range of renal proteins in terms of pI, MW, hydrophobicity, abundance, and subcellular location. Many of these proteins, such as low-abundance proteins, membrane proteins and proteins with extreme values in pI or MW are traditionally under-represented in 2-DE-based proteomic analysis.

Publisher

Springer Science and Business Media LLC

Subject

Molecular Biology,Biochemistry

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3