Author:
Aretz Sebastian,Krohne Tim U,Kammerer Kerstin,Warnken Uwe,Hotz-Wagenblatt Agnes,Bergmann Marion,Stanzel Boris V,Kempf Tore,Holz Frank G,Schnölzer Martina,Kopitz Jürgen
Abstract
Abstract
Mapping of proteins involved in normal eye functions is a prerequisite to identify pathological changes during eye disease processes. We therefore analysed the proteome of human vitreous by applying in-depth proteomic screening technologies. For ethical reasons human vitreous samples were obtained by vitrectomy from “surrogate normal patients” with epiretinal gliosis that is considered to constitute only negligible pathological vitreoretinal changes. We applied different protein prefractionation strategies including liquid phase isoelectric focussing, 1D SDS gel electrophoresis and a combination of both and compared the number of identified proteins obtained by the respective method. Liquid phase isoelectric focussing followed by SDS gel electrophoresis increased the number of identified proteins by a factor of five compared to the analysis of crude unseparated human vitreous. Depending on the prefractionation method proteins were subjected to trypsin digestion either in-gel or in solution and the resulting peptides were analysed on a UPLC system coupled online to an LTQ Orbitrap XL mass spectrometer. The obtained mass spectra were searched against the SwissProt database using the Mascot search engine. Bioinformatics tools were used to annotate known biological functions to the detected proteins. Following this strategy we examined the vitreous proteomes of three individuals and identified 1111 unique proteins. Besides structural, transport and binding proteins, we detected 261 proteins with known enzymatic activity, 51 proteases, 35 protease inhibitors, 35 members of complement and coagulation cascades, 15 peptide hormones, 5 growth factors, 11 cytokines, 47 receptors, 30 proteins of visual perception, 91 proteins involved in apoptosis regulation and 265 proteins with signalling activity. This highly complex mixture strikingly differs from the human plasma proteome. Thus human vitreous fluid seems to be a unique body fluid. 262 unique proteins were detected which are present in all three patient samples indicating that these might represent the constitutive protein pattern of human vitreous. The presented catalogue of human vitreous proteins will enhance our understanding of physiological processes in the eye and provides the groundwork for future studies on pathological vitreous proteome changes.
Publisher
Springer Science and Business Media LLC
Subject
Molecular Biology,Biochemistry
Reference33 articles.
1. Le Goff MM, Bishop PN: Adult vitreous structure and postnatal changes. Eye (Lond) 2008, 22: 1214–1222. 10.1038/eye.2008.21
2. Theocharis AD, Papageorgakopoulou N, Feretis E, Theocharis DA: Occurrence and structural characterization of versican-like proteoglycan in human vitreous. Biochimie 2002, 84: 1237–1243.
3. Freddo TF, Bartels SP, Barsotti MF, Kamm RD: The source of proteins in the aqueous humor of the normal rabbit. Invest Ophthalmol Vis Sci 1990, 31: 125–137.
4. Barsotti MF, Bartels SP, Freddo TF, Kamm RD: The source of protein in the aqueous humor of the normal monkey eye. Invest Ophthalmol Vis Sci 1992, 33: 581–595.
5. Funatsu H, Yamashita T, Yamashita H: Vitreous fluid biomarkers. Adv Clin Chem 2006, 42: 111–166.
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献